بررسی شرایط فیزیکوشیمیایی زون دگرسانی پتاسیک، کانسار مس پورفیری سرکوه، با استفاده از شیمی بیوتیت و کلریت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشجوی کارشناسی ارشد، گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار، گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

4 دانشجوی دکترا، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

5 دانشیار، گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

کانسار مس پورفیری سرکوه در 180 کیلومتری غرب استان کرمان، 6 کیلومتری جنوب غرب کانسار مس پورفیری سرچشمه و در 10 کیلومتری شمال‌ شرق شهرستان پاریز واقع شده است. از لحاظ تقسیمات زمین‌شناسی بخشی از کمان ماگمایی ارومیه – دخترمی‌باشد. سنگ‌های رخنمون یافته در این منطقه عمدتا متشکل از واحد‌های آتشفشانی، توف، آندزیت و آندزیت بازالت می‌باشد. همچنین واحدهای نفوذی این منطقه شامل گرانیت تا گرانودیوریت و به میزان کمتر کوارتزدیوریت می‌باشد. دگرسانی‌های عمده این کانسار شامل پتاسیک، فیلیک، آرژیلیک و پروپیلیتیک و نیز دگرسانی‌های حدواسط نظیر پتاسیک - آرژیلیک و یا پتاسیک – فیلیک می‌باشد. هدف از این پژوهش، مطالعه شیمی کانی بیوتیت‌ و کلریت به منظور بررسی شرایط فیزیکوشیمیایی طی روند تدریجی تغییرات ماگمایی به گرمابی در زون دگرسانی پتاسیک این کانسار می‌باشد. بر مبنای دما‌سنجی بیوتیت‌های تعادل مجدد یافته، در زمان تغییر شرایط ماگمایی به گرمابی این کانسار، دما از کمینه 343 تا بیشینه 397 درجه سانتی‌گراد متغیر بوده است. همچنین سرشت پر منیزیم (High-Mg)، قرار‌گیری بیوتیت‌های تعادل مجدد یافته در مرز بین محدوده بافری هماتیت مگنتیت( HM) و نیکل-نیکل اکسید (NNO) و نیز تبلور مگنتیت با حاشیه هماتیتی حاکی از شرایط فوگاسیته اکسیژن بالا در زمان شروع فرایندهای گرمابی این کانسار می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Physicochemical attributes of potassic alteration zone in Sarkuh porphyry copper deposit; using biotite and chlorite chemistry

نویسندگان [English]

  • A. R. Zarasvandi 1
  • Fatemeh Davoodian Ranjbar 2
  • Mohsen Rezaei 3
  • M. Tashi 4
  • Houshang Pourkaseb 5
1 Professor, Department of Geology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 M. Sc. Student, Department of Geology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Assistant Professor, Department of Geology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
4 Ph.D. Student, Department of Geology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
5 Associate Professor, Department of Geology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Sarkuh porphyry copper deposit is located 180 km west of Kerman province, 6 km southwest of Sarcheshmeh porphyry copper mine in the northeast of Pariz city. Considering geological divisions, it is a part of Urumieh-Dokhtar magmatic arc. The exposed rocks in this area are mainly composed of volcanic units, tuffs, andesite and basaltic andesite. Also intrusive units include granite to granodiorite, and to a lesser extend quartz diorite rocks. Major alterations of the deposit include potassic, phyllic, argillic and propylitic, as well as intermediate alterations such as potassic - argillic and potassic - phyllic. The purpose of this research is to study the chemical features of biotite and chlorite in order to investigate the physicochemical attributes of porphyry system during magmatic to hydrothermal transition in the patassic alteration. Based on the temperatures of reequilibrated biotite, at the time of magmatic to hydrothermal transition, the temperature ranged from 343 to 397°C. Also high magnesium nature of biotites, and their plotting in the boundary of magnetite-hematite (HM) and nickel-nickel oxide (NNO) buffering lines, as well as presence of magnetite with hematite rims indicate previlling of the high oxygen fugacity during potassic alteration.

کلیدواژه‌ها [English]

  • Biotite
  • Chlorite
  • Sarkuh porphyry copper deposit
  • Urumieh-Dokhtar magmatic arc
  • Kerman
کتابنگاری

زراسوندی، ع.، رضایی، م.، پورکاسب، ه.، اسدی، س. و عظیم‎زاده، م.، 1396- شاخص‎سازی زون دگرسانی پتاسیک در کانسار مس پورفیری ایجو با استفاده از مینرال شیمی بیوتیت و کلریت، مجله پترولوژی اصفهان، سال هشتم، شماره سی و دوم، زمستان 1396، ص. 67-86.

سخایی، ز.، داودیان، ع. و شبانیان، ن.، 1394- همخوانی دماسنجی ماکل دگرشکل کلسیت درسنگ های آهکی و زمین- دماسنجی کلریت های توده ی گابرویی سرکوبه، مجله بلور شناسی و کانی‎شناسی ایران، سال بیست و چهارم، شماره دوم، تابستان 95، صص. 321 تا 342.

علوی، س.، طباخ شعبانی، ا.، نیرومند، ش. و فرانچسکاتچه، ف.، 1393- ترکیب و زمین‎دماسنجی کلریت‎های حاصل از دگرسانی بیوتیت در توده‎های گرانیتوئیدی نقده و پسوه، مجله بلورشناسی و کانی‎شناسی ایران، سال بیست و دوم، شماره سوم، پائیز93، صص. 393 تا 404.

 

References

Afshooni, S. Z., Mirnejad, H., Esmaeily, D. and Haroni, H. A., 2013- Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geology Reviews, v.54, p. 214- 232.

Aghazadeh, M., Hou, Z., Badrzadeh, Z. and Zhou, L., 2015- Temporal spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geology Reviews, 70, 385- 406.

Audetat, A., Pettke, T., Heinrich, C. A. and Bodnar, R., 2008- The composition of magmatic–hydrothermal fluids in barren and mineralized intrusions. Economic Geology, 103: 877- 90.

Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H. A. and Yavuz, R., 2008- Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrolology, 94(1): 107- 122.

Beane, R. E., 1974- Biotite stability in the porphyry copper environment. Economic Geology, 69: 241- 256.

Bettison, L. A. and Schiffman, P., 1988- Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. American Mineralogist,1988 Feb 1;73(1-2):62- 76.

Boomeri, M., Nakashima, K. and Lentz, D. R., 2009- The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103: 17- 29.

Boomeri, M., Nakashima, K. and Lentz, D. R., 2010- The Sar-Cheshmeh porphyry copper deposit, Kerman, Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews, 38: 367- 381.

Bowman, J. R., Parry, W. T., Kropp, W. P., Kruer, S. A., 1987- Chemical and isotopic evolution of hydrothermal solutions at Bingham,Utah.EconGeol, 82:395- 428.

Cathelineau, M., 1988- Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23: 471- 485.

Coulson, I. M., Dipple, G. M. and Raudsepp, M., 2001- Evolution of HF and HCl activity in magmatic volatiles of the gold- mineralized Emerald Lake pluton, Yukon Territory, Canada. Mineralium Deposita, 36: 594- 606.

Deer, W. A., Howie, R. A. and Zussman, J., 1992- Anintroduction to the Rock forming minerals. 17th, Longman, London, 696 p

Finch, A. A., Parsons, I. and Mingard, S. C., 1995- Biotite as indicators of fluorine fugacities in late-stage magmatic fluids: the Gardar province of south Greenland. J. Petrol, 36(6), 1701- 1728.

Henry, D. J., Guidotti, C. V., and Thomson, J. A., 2005- The Ti-saturation surface for low to medium pressure metapelitic biotite: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90: 316- 328.

Hey, M. H., 1954- A new review of the chlorites, Mineralogical Magazine, 30:  277- 292.

Jacobs, D. C. and Parry, W. T., 1979-  Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Econ Geol, 74:860- 887.

Kaniran Consulting Company, 2008- Final report on geology and alteration of Sarkuh region in 1;5000, p.256.

Lalonde, A. E. and Bernard, P., 1993- Composition and color of biotite from granites: two useful Properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogeny, Northwest Territories. Canadian Mineralogist, 31(1): 203- 217.

Landtwing, M. R., Pettke, T., Halter, W. E., Heinrich, C. A., Redmond, P. B., Einaudi, M. T. and Kunze, K., 2005- Copper deposition during quartz dissolution by cooling magmatic– hydrothermal fluids: the Bingham porphyry. Earth and Planetary Science Letters 235: 229- 243.

Lanier, G., John, E. C., Swensen, A. J., Reid, J., Bard, C. E., Caddey, S. W. and Wilson, J. C., 1978- General geology of the Bingham mine, Bingham canyon, Utah. Economic Geology, 73(7), pp.1228- 1241.

Loferski, P. J. and Ayuso, R. A., 1995- Petrography and mineral chemistry of the composite Deboullie pluton, northern Maine, U.S.A.: implications for the genesis of Cu–Mo mineralization. Chem. Geol, 123: 89- 105.

Maydagan, L., Franchini, M., Impiccini, A. and Lentz, D. R., 2016- Phyllosilicates geochemistry and distribution in the Altar porphyry Cu- (Au) deposit, Andes Cordillera of San Juan, Argentina: Applications in exploration, geothermometry, and geometallurgy. Journal of Geochemical Exploration,v, 167,p. 83- 109.

McInnes, B. I. A., Evans, N. J., Belousova, E. and Griffin, W. L., 2003- Porphyry copper deposits of the Kerman belt, Iran: Timing of mineralization and exhumation processes. Science Research Report, Australia. CSIRO, 41.

McInnes, B. I. A., Evans, N. J., Fu, F. Q., Garwin, S., Belousova, E., Griffin, W. L., Bertens, A., Sukama, D., Permanadewi, S., Andrew, R. L. and Deckart, K., 2005- Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu–Mo–Au deposits. In Super Porphyry Copper and Gold Deposits: A Global Perspective (e.d. T.M. Porter)., PGC publishing, Adelaide.  pp. 1- 16.

Mirnejad, H., Mathur, R., Hassanzadeh, J., Shafie, B. and Nourali, S., 2013- Linking Cu mineralization to host porphyry emplacement: Re-Os ages of molybdenites versus U-Pb ages of zircons and sulfur isotope compositions of pyrite and chalcopyrite from the Iju and Sarkuh Porphyry deposits in southeast Iran. Economic Geology,v, 108,p. 861- 870.

Müller, D. and Groves, D. I., 2000- Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Springer, Berlin, 252 pp.

Munoz, J. L. and Swenson, A., 1981- Chloride-hydroxyl exchange in biotite and estimation of relative HCl/HF activities in hydrothermal fluids. Economic Geology, 76: 2212- 2221.

Munoz, J. L., 1984- F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 13(1), pp.469- 493.

Munoz, J. L., 1992- Calculation of HF and HCl fugacities from biotite compositions: revised equations. Geological Society of American Abstract Programs, 24: A221

Nachit, H., Ibhi, A. B., El Abia, H., El Hassan, A. and Ben Ohoud, M., 2005- Discrimination between primary magmatic biotites, reequilibrated biotites, and neoformed biotites. Computer Research Geoscience, 337: 1415- 1420.

Nourali, S. and Mirnejad, H., 2012- Hydrothermal evolution of the Sar-Kuh porphyry copper deposit, Kerman, Iran: A fluid inclusion and sulfur isotope investigation. Geopersia, 2(2), 93- 107.‏

Parneix, J. C., Beaufort, D., Dudoignon, P. and Meunier, A., 1985- Biotite chloritization process in hydrothermally altered granites. Chemical Geology 51: 89- 101.

Parsapoor, A., Khalili, M., Tepley, F. and Maghami, F., 2015- Mineral chemistry and isotopic composition ofmagmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran). Ore Geology Reviews, 66: 200- 218.

Richards, J. P., 2015- Introduction to special issue: Magmatic and metallogenic evolution of the Tethyan Orogen. Ore Geology Reviews, 70: 321- 322.

Richards, J. P., 2016- Clues to hidden copper deposits. Nature Geoscience, 9, 1- 2.

Richards, J. P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012- High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Economic Geology 107: 295- 332.

Seedorff, E., Dilles, J. H., Proffett, J. M., Einaudi, M. T., Zurcher, L., Stavast, W. J. A., Johnson, D. A. and Barton, M. D., 2005- Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology ,100th anniversary volume, 29, pp.251- 298

Selby, D. and Nesbitt, B. E., 2000- Chemical composition of biotite from Casino porphyry Cu–Au–Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171: 77- 93.

Siahcheshme, K., Calagari, A. A., Abedini, A. and Lentz, D. R., 2012- Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn- to postmagmatic hydrothermal fluids. International Geology Review, 54(12): 1353–1368.

Sillitoe, R. H., 2010- Porphyry copper systems. Economic Geology, v.105(1),p. 3- 41.

Sun, W. D., Liang, H. Y., Ling, M. X., Zhan, M. Z., Ding, X., Zhang, H., Yang, X. Y., Li, Y. L., Ireland, T. R., Wei, Q. R. and Fan, W. M., 2013- The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263- 275.

Teiber, H., Scharrer, M., Marks, M. A. W., Arzamastsev, A. A., Wenzel, T. and Markl, G., 2015- Equilibrium partitioning and subsequent re-distribution of halogens among apatite–biotite–amphibole assemblages from mantle-derived plutonic rocks: Complexities revealed. Lithos, 220: 221- 237.

Tischendorf, G., Gottesmann, B., Förster, H. J. and Trumbull, R. B., 1997- On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61: 809- 834.

Titley, S. R. and Beane, R. E., 1981- Porphyry copper deposits,Part I: Geologic settings, petrology and tectonogenesis.  Economic Geology,v.75,p. 214- 269.

Van Middelaar, W. T. and Keith, J. D., 1990- Mica chemistry as an indicator of oxygen and halogen fugacities in the Can Tung and other W-related granitoids in the North American Cordillera. Geological Society of America, Special Paper 246, pp.205- 220.

Wang, R., Richards, J. P., Hou, Z., Yang, Z. and Dufrane, A., 2014- Increased magmatic water content the key to Oligo–Miocene porphyry Cu–Mo ± Au formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 109: 1315- 1339.

Wilkinson, J. J., Chang, Z., Cooke, D. R., Baker, M. J., Wilkinson, C. C., Inglis, S., Chen, H. and Gemmell, J. B., 2015- The chlorite proximitor: A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152, pp.10- 26.

Willmore, C. C., Boudreau, A. E. and Kruger, F. J., 2000- The halogen geochemistry of the Bushveld Complex, Republic of South Africa: implications for chalcophile element distribution in the lower and critical zones. Journal of  Petrology, 41 (10): 1517- 1539.

Wones, D. R. and Eugster, H. P., 1965- Stability of biotite: experiment, theory, and application. American Mineralogist, 50: 1228- 1272.

Yavuz, F., 2003- Evaluating micas in petrologic and metallogenic aspect: Part II – Applications using the computer program Mica+. Computers and Geosciences, 29(10): 1215- 1228

Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005- Porphyry copper deposits of the Urumieh Dokhtar magmatic arc, Iran: Super porphyry copper and gold deposits: A global perspective, v. 2, p. 441- 452.

Zarasvandi, A., Rezaei, M., Raith, J. G., Lentz, D. R., Azimzadeh, A. M. and Pourkaseb, H., 2015a- Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran. Journal of Asian Earth Sciences, 111: 175- 191.

Zarasvandi, A., Rezaei, M., Raith, J. G., Pourkaseb, H., Asadi, S., Saed, M. and Lentz, D. R., 2018- Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et Cosmochimica Acta.

Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M. and Pourkaseb, H., 2015b- Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar magmatic arc (UDMA), Iran. Ore Geology Reviews, 70: 407- 423.

Zhang, W., Lentz, D. R., Thorne, K. G. and McFarlane, C., 2016-  Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W–Mo–Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77: 82- 96.

Zhu, C. and Sverjensky, D. A., 1992- F–Cl–OH partitioning between biotite and apatite. Geochimica. et Cosmochimica Acta, 56: 3435- 3467.