Document Type : Original Research Paper

Authors

1 Department of Geology, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran

2 Department of petrology, Faculty of Earth Sciences, Institute for Advanced Studies in Basic Sciences , Zanjan , Iran

Abstract

The petrographical examination of peridotites of the Nehbandan ophiolitic complex revealed that the peridotites of Kalateh Shahpouri, Qadamgah, Lah-Kouh, Cheshmeh anjir, Bandan, and Zolfaghari were of harzburgite type and Sefid-Kouh and Nasfandeh-Kouh were of lherzolite type. Generally, the types of clinopyroxenes in the peridotites of this complex were diopside. The geochemical investigation of clinopyroxenes in Mg# vs. Al2O3, Cr2O3, and TiO2 graphs and Ti vs. Nd, Zr, and Sr graphs shows that the peridotites of Nasfandeh-Kouh, Bandan, Zolfaghari, and Sefid-Kouh with a low degree of partial melting belong to the Abyssal tectonic setting and back-arc basin.on the other side, the harzburgites of Kalateh Shahpouri and Cheshmeh anjir were formed in the Supra-subduction zone tectonic setting and fore-arc basin and have a high degree of partial melting. The study of incompatible elements, LILE and HFSE in spider diagrams normalized to the primary mantle and as well as the study of REEs in spider diagrams normalized to the chondrite for clinopyroxenes confirm this issue. Therefore, Nasfandeh-Kouh and Sefid-Kouh lherzolites as well as Qadamgah, Lah-Kouh, Bandan, and Zolfaghari harzburgites with a low degree of depletion were more consistent with the Mid-oceanic ridgestectonic setting, and the harzburgites of Kalateh Shahpouri and Cheshmeh anjir were close to the Supra-subduction zone tectonic setting with a high degree of depletion.

Keywords

Main Subjects

Alavi Naeini, M., Eftekharnejad, J., Aghanabati, A., 1990. Geological map of Zabol, Scale 1/100000. Geological Survey of Iran. (In Persian).
Albarede, F, 2003. Geochemistry: an introduction. Cambridge University Press.60 pp.
Akizawa, N., Arai, S., Tamura, A., Uesugi, J., and Python, M., 2011. Crustal diopsidites from the northern Oman ophiolite: evidence for hydrothermal circulation through suboceanic Moho. Journal of Mineralogical and Petrological Sciences 106, 261–266. https://doi.org/10.2465/jmps.110621b.
Bali, E., Audetat, A., and Keppler, H., 2011. The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contributions to Mineralogy and Petrology 161(4): 597–613. https://doi.org/10.1007/s00410-010-0552-9.
Bizimis, M., Salters, V.J.M., and Bonatti, E., 2000. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs: Chemical Geology165(1): 67–85. https://Doi: 10.1016/S0009-2541(99)00164-3.
Bodinier, J.L., and Godard, M., 2007. Orogenic, ophiolitic, and abyssal peridotites. Treaties on Geochemistry, 2(1): 1–73. https://doi.org/10.1016/B0-08-043751-6/02004-1.
Cherniak, D.J., 2001.  Pb diffusion in Cr diopside, augite, and enstatite, and consideration of the dependence of cation diffusion in pyroxene on oxygen fugacity. Chem. Geol., 177(3): 381-397. https://doi.org/10.1016/S0009-2541(00)00421-6.
Danyushevsky, L.V., Sobolev, A.V., and Falloon, T.J., 1995. North Tongan high-Ca boninite petrogenesis: the role of Samoan plume and subduction zone-transform fault transition. Journal of Geodynamics 20(3): 219–241. https://doi.org/10.1016/0264-3707(95)00013-Y.
Deer, W.A., Howie, R.A., and Zussman, J., 2013. An introduction to the rock-forming minerals, 3th edition, Longman Scientific & Technical, 528pp.
Delavari M., Amini S., Saccani E., and Beccaluva L., 2009. Geochemistry and Petrology of Mantle Peridotites from the NehbandanOphioliticComplex, Eastern Iran. Journal of Applied Sciences, 9(15): 2671-2687. https://doi.org/10.3923/jas.2009.2671.2687
Gornova, M., Karimov, A., Skuzovatov, S., and Belyaev, V., 2020. From Decompression Melting to Mantle-Wedge Refertilization and Metamorphism: Insights from Peridotites of the Alag Khadny Accretionary Complex (SW Mongolia). Minerals, 10(5): 396-421. https://www.mdpi.com/2075-163X/10/5/396.
Hulme, S.M., Wheat, C.G., Fryer, P., and Mottl, M.J., 2010. The porewater chemistry of the Mariana serpentinite mud volcanoes is a window to the seismogenic zone. Geochemistry, Geophysics, Geosystems, 11(1): 1–29. https://doi.org/10.1029/2009GC002674.
Hamzehpour, B., 1975. Geological map of Chahar Farsakh, Scale 1/100000. Geological Survey of Iran. (In Persian).
Ishikawa, T., Nagaishi, K., and Umino, S., 2002. Boninitic volcanism in the Oman ophiolite: implications for  the thermal condition during the  transition from spreading ridge to arc, Geology 30(10): 899–902. https://doi.org/10.1130/0091-7613(2002)030<0899:BVITOO>2.0.CO;2.
Karimzadeh, H., Rahgoshay, M., and Monsef, I., 2020. Mineralogy, Geochemistry, and Petrogenesis of Kalateh-Shahpouri, Qadam-Gah and Nasfandeh Kuh peridotites, Nehbandan Ophiolitic Complex, East of Iran. Journal of Economic Geology, 12(2): 157-176. (In Persian with English abstract). https://doi.org/10.22067/econg.v12i2.76889.
Karimzadeh, H., 2021. Mineralogy, geochemistry, and petrogenesis of Nehbandan Ophiolites Complex (Eastern Iran). Ph.D. thesis. Shahid Beheshti University. Iran. 227 p. (In Persian).
Le Bas, M.J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology, 41(10):1467–1470. https://doi.org/10.1093/petrology/41.10.1467.
Mange, M. A., and Wright, D., 2007. Heavy minerals in use, Elsevier, Amsterdam, 370p.
Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer Academic Publishers, 384 pp.
Nisbet, E. G., Pearce, J. A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to mineralogy and petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776.
Niu, Y., and Hékinian, R., 1997. Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges. Earth Planet. Sci. Lett, 146(2): 243–258. https://doi.org/10.1016/S0012-821X(96)00218-X.
Parkinson, I.J., and Pearce, J.A., 1998. Peridotites from the Izu–Bonin–Mariana Forearc (ODP Leg 125): Evidence
for Mantle Melting and Melt–Mantle Interaction in a Supra-Subduction Zone Setting. Petrology 39(9):
1577–1618. https://doi.org/10.1093/petroj/39.9.1577.
Pearce, J.A., Lippard, S.J., and Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. Spec. Publ, 16(1): 77–94. http://dx.doi.org/10.1144/gsl.sp.1984.016.01.06.
Python, M., Ceuleneer, G., Ishida, Y., Barrat, J.-A., and Arai, S., 2007. Oman diopside: a new lithology diagnostic of very high-temperature hydrothermal circulation in mantle peridotite below oceanic spreading centers. Earth and Planetary Science Letters, 255(3): 289-305. https://doi.org/10.1016/j.epsl.2006.12.030.
Rollinson, H. R., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Publishing Group. 352 pp.
Saccani E., Delavari M., Beccaluva L., and Amini, S., 2010. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos, 117(4): 209-228. https://doi.org/10.1016/j.lithos.2010.02.016.
Sano, S., and Kimura, J.I., 2007. Clinopyroxene REE geochemistry of the Red Hills Peridotite, New Zealand: interpretation of magmatic processes in the upper mantle and in the Moho transition zone. Journal of Petrology, 48(1): 113–139. https://doi.org/10.1093/petrology/egl056.
Seyler, M., Toplis, M.J., Lorand, J.P., Luguet, A., and Cannat, M., 2001. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology, 29(2):155–158. https://doi.org/10.1130/0091-7613(2001)029<0155:CMRIEM>2.0.CO;2.
Stocklin, J., 1977. Structural correlation of the Alpine ranges between Iran and Central Asia. Mémoires Société Géologique de France, 8(1): 333–353.
Streckeisen, A., 1979. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendation and suggestion of the IUGS, sub-commission on the systematic of Igneous Rock. Geology, 7(7): 331-335. https://doi.org/10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2.
Sun, S.S., and McDonough, W.F., 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313–346.  https://doi.org/10.1144/GSL.SP.1989.042.01.19.
Tamura, A., and Arai, S., 2006. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90(2): 43–56. https://doi.org/10.1016/j.lithos.2005.12.012.
Tirrul, R., Bell, I.R., Griffis, R.J., and Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1): 134–150. https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2.
Tirrul, R., Johns, J.W., Willoughby, N.O., Camp, V.E., Griffis, R.J., Bell, I.R., and Meixner, H.M., 1989. Geological map of Nehbandan, Scale 1/100000. Geological Survey of Iran.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://dx.doi.org/10.2138/am.2010.3371.
Xiong, F., Dilek, Y., Wirth, R., Xu, X., and Yang, J., 2019. Opx–Cpx exsolution textures in lherzolites of the Cretaceous Purang Ophiolite (S. Tibet, China), and the deep mantle origin of Neotethyan abyssal peridotites, International Geology Review, 62(6): 665–682. https://doi.org/10.1080/00206814.2019.1627678.
Xu, X.S., O'Reilly, S.Y., Griffin, W.L., and Zhou, X.M., 2000. Genesis of young lithospheric mantle in southeastern China: A LAM-ICPMS trace element study. Journal of Petrology 41(1): 111–148. https://doi.org/10.1093/petrology/41.1.111.
Zarrinkoub, M. H., Pang, K.N., Chung, S. L., Khatib, M. M., Mohammadi, S. S., Chiu, H.Y., and Lee, H.Y., 2012. Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos, 154(26): 392–405. https://doi.org/10.1016/j.lithos.2012.08.007.
Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.,and  Qi, L., 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46(3), 615–639. https://doi.org/10.1093/petrology/egh091.