بررسی ژنز و خاستگاه ژئودینامیکی کرومیتیت های نیامی مجموعه اولترامافیک آب بید (جنوب استان کرمان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه زمین‎شناسی، دانشگاه پیام نور، همدان، ایران

2 دکترا، گروه زمین‎شناسی، دانشگاه پیام نور استان کرمان، کرمان، ایران

3 دانشیار، گروه زمین‎شناسی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

کرومیتیت‌های نیامی در اندازه‌های متفاوت همراه با غلاف‌های دونیتی در قسمت‌های مختلف مجموعه اولترامافیک آب بید واقع در قسمت جنوب شرقی کمربند افیولیتی زاگرس رخنمون دارند. توده‌های کرومیتیت آب بید اغلب به شکل عدسی یا لایه‌ای بوده ساخت‌های ماگمایی مختلفی مانند توده ای، پراکنده و لایه ای را نشان می‌دهند. میزان Cr#، Al2O3 و TiO2 در کرومیتیت‌های آب بید به ترتیب از 43/58 تا 36/65، 03/18 تا 58/22 و 20/0 تا 39/0 متغیر است. مقادیر Al2O3، TiO2 و FeO/MgO محاسبه شده برای مذاب مادر کرومیتیت‌های آب بید در طیف مذاب‌های توله‌ایتی قرار می‌گیرد. ویژگی‌های ساختاری از قبیل مرز ناگهانی کرومیتیت و دونیت های غلافی با هارزبورژیت‌های میزبان، عدم انطباق ضخامت دونیت و کرومیتیت و وجود ساخت‌های مختلف، نشاندهنده مدل ماگمایی-متاسوماتیک در طول شبکه‌ای از کانال‌های بهم پیوسته دونیتی است. ویژگی‌های شیمی کانی کرومیتیت‌ها و ترکیب مذاب مادر کرومیتیت‌های مجموعه آب بید نشانگر آن است که توده اولترامافیک آب بید بخشی از یک سکانس افیولیتی در زون سوپراسابداکشن می‌باشد. هارزبورژیت‌های میزبان تحت تاثیر درجات مختلف ذوب بخشی و واکنش مذاب/سنگ واقع شده که سبب ایجاد کانالهای دونیتی گردیده که خود عبور و چرخش مذاب مادر کرومیتیت ها را تسهیل نموده است. درجات متوسط ذوب بخشی گوشته و سایر شواهد از جمله شیمی کانی کرومیت می‌تواند نشاندهنده محیط‌های گسترش اقیانوسی پشت کمانی باشد. بنابراین می‌توان هارزبورژیت‌های مجموعه آب بید را بخشی از گوه گوشته ای بالای اقیانوس فرورونده نئوتتیس در نظر گرفت که در زیر یک مرکز گسترش در حوضه پشت کمانی با سن احتمالی تریاس بالایی تا کرتاسه واقع شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genesis and tectonic setting of podiform chromitites from Ab-Bid ultramafic complex (Southern Kerman)

نویسندگان [English]

  • Sima Peighambari 1
  • Mahdieh Mohammadi 2
  • Hamid Ahmadipour 3
1 Asisstant Professor, Department of Geology, Payame Noor University, Hamedan, Iran
2 Ph.D., Department of Geology, Payame Noor University, Kerman, Iran
3 Associate Professor, Department of Geology, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Podiform chromitite bodies of various sizes associated with dunite envelopes found at several localities in the Ab-bid ultramafic massif in the southeast of the outer Zagros ophiolite belt. The chromitites occur as layered and lenticular bodies and veins which show different magmatic textures such as massive, disseminated, and banded features. The Ab-Bid chromitites display a variation in Cr# from 65.36 to 58.43. The Al2O3 and TiO2 contents of chromites range from 18.03% to 22.58 % and 0.20 % to 0.39 %, respectively. The Al2O3, TiO2 and FeO/MgO values, calculated for parental melts of Ab-Bid chromitites, are within the range of melts which are similar to tholeiitic melts. Structural features such as sharp contacts between chromitites and their dunite envelope with host harzburgites, no correlation between chromitite size and dunite thickness, and various textures may be related to magmatic-metasomatic processes through interconnected dunitic channels. The mineralogical and chemical compositions of the chromitites as well as calculated parental melt compositions of Ab-Bid chromitites are consistent with the idea that the Ab-Bid massif was part of mantle section of an ophiolite from a suprasubduction zone. Harzburgites was influenced by hydrous partial melts; variable melt/rock interaction caused the formation of dunitic channels and allowed the chromitite parental melt to percolate through them. Middle partial melting degrees and other mineral chemistry of chromites could be representative of back-arc oceanic spreading environments. Therefore, Ab-Bid harzburgites are parts of mantle wedge above the subducting Neo-Tethys oceanic plate which is under a probably Upper Triassic-Cretaceous back-arc spreading centre.

کلیدواژه‌ها [English]

  • Podiform Chromitite
  • ultramafic complex
  • Ophiolite
  • Ab-Bid
  • Kerman
کتابنگاری

محمدی، م.، 1395- ژئوشیمی، پتروژنز و ارزیابی اقتصادی مجموعه اولترامافیک آب بید، خاور حاجی‎آباد (استان هرمزگان)، رساله دکترا، دانشگاه شهید باهنر کرمان، 286 ص.

قاسمی، ح.، 1379- پترولوژی، ژئوشیمی و منشأ مواد معدنی مجموعه الترامافیک- مافیک سیخوران، جنوب خاوری ایران، رساله دکترا، دانشگاه تربیت مدرس، 250 ص.

 

References

Ahmadipour, H., Sabzehei, M., Whitechurch, H., Rastad, E. and Emami M. H., 2003- Soghan Complex as an evidence for paleospreading center and mantle diapirism in Sanandaj-Sirjan zone (South-East Iran). Journal of Sciences, GSI 14, p. 157- 172.

Ahmed, A. H. and Arai, S., 2003- Platinum-group minerals in podiform chromitites of the Oman ophiolite. Canadian Mineralogists, V. 4, p. 597- 616.

Ajirlu, M. S., Moazzen, M. and Hajialioghli, R., 2016- Tectonic evolution of the Zagros Orogen in the realm of the Neotethys between the Central Iran and Arabian Plates: An ophiolite perspective. Central European Geology, V. 59, p. 1- 27.

Arai, S. and Yurimoto, H., 1994- Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Economic Geology, V. 89, p. 1279- 1288.

Arai, S., 1994- Compositional variation of olivine chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research, V. 59, p. 279- 294.

Arai, S., Kadoshima, K. and Morishita, T., 2006- Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. Journal of the Geological Society, V. 163, p. 869- 879.

Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K. and Ishimaru, S., 2011- Chemical characteristics of chromian spinel in plutonic rocks: implication for deep magma processes and discrimination of tectonic setting. Island Arc, V. 20, p. 125- 137.

Augé, T., 1987- Chromite deposits in the northern Oman ophiolite: Mineralogical constraints. Mineralium Deposita, V. 22, p. 1- 10.

Barnes, S. J. and Roeder, P. L., 2001- The Rang of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, V. 42, p. 2279- 2302.

Barnes, S. J., 1986- The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contribution of Mineralogy and Petrology, V. 93, p. 524- 531.

Bedard, J. H., 1999- Petrogenesis of boninites from the Betts Cove Ophiolite, Newfoundland, Canada: identification of subducted source components. Journal of Petrology, V, 40, p. 1853- 1889.

Bonavia, F. F., Diella, V. and Ferrario, A., 1993- Precambrian podiform chromitites from Kenticha hill, southern Ethiopia. Economic Geology, V. 88, p. 198- 202.

Bortolotti, V., Chiari, M., Kodra A., Marcucci, M., Marroni, M., Mustafa, F., Prela, M., Pandolfi, L., Principi, G. and Saccani, E., 2006- Triassic MORB magmatism in the southern Mirdita zone (Albania). Ofioliti, V. 31, p. 1- 9.

Bortolotti, V., Chiari, M., Marcucci, M., Photiades, A., Principi, G. and Saccani, E., 2008- New geochemical and age data on the ophiolites from the Othrys area (Greece): Implication for the Triassic evolution of the Vardar Ocean. Ofioliti, V. 33, p. 135- 151.

Brough, C. P., Prichard, H. M., Neary, C. R., Fisher, P. C. and McDonald, I., 2015- Geochemical Variations Within Podiform Chromitite Deposits in the Shetland Ophiolite: Implications for Petrogenesis and PGE concentration. Economic Geology, V. 110, p. 187-208.

Büchl, A., Brügmann, G. and Batanavo, V. G., 2004- Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Geochimica et Cosmochimca Acta, V. 68, p. 3397- 3404.

Dick, H. J. B. and Bullen, T., 1984- Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, V. 86, p. 54- 76.

Dilek Y., Furnes H. and Shallo M., 2008- Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos, V. 100, p. 174- 209.

Dilek, Y. and Delaloye, M., 1992- Structure of the Kızılda ophiolite, a slow-spread Cretaceous ridge segment north of the Arabian promontory. Geology, V. 20, p. 19–22.

Dönmez, C., Keskin, S., Günay, K., Çolakoğlu, A. O., Çiftçi, Y., Uysal, İ., Türkel, A. and Yıldırım, N., 2014- Chromite and PGE geochemistry of the Elekdağ Ophiolite (Kastamonu, Northern Turkey): implications for deep magmatic processes in a supra-subduction zone setting. Ore Geology Reviews, V. 57, p. 216- 228.

Falloon, T. J., Danyushevsky, L. V., Crawford, A. J., Meffre, S., Woodhead, J. D. and Bloomer, S. H., 2008- Boninites and Adakites from the NorthernTermination of the TongaTrench: Implications for Adakite Petrogenesis. Journal of Petrology, V. 49, p. 697- 715.

Fisk, M. R., 1986- Basalt-magma interactions with harzburgite and the formation of high magnesium andesites. Geophisical Research Letter, V. 13, p. 467- 470.

Gale, A., Dalton, A. D., Langmuir, C. H., Su, Y. and Schilling, J. G., 2013- The mean composition of ocean ridge basalts, Geochemistry Geophysics Geosystems, V. 14, p. 489- 518.

Ghasemi, A. and Talbot, C. J., 2006- A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, V. 26, p. 683-693.

Ghasemi, H., Juteau, T., Bellon, H., Sabzehi, M., Whitechurch, H. and Ricou, L. E., 2002- The mafic-ultramafic complex of Sikhoran (central Iran): A polygenetic ophiolite complex. Comptes Rendus Geoscience, V. 334, p. 431- 438.

Ghazi, J. M., Mozzen, M., Rahgoshay, M. and Shafaii Moghadam, H., 2012- Geochemical characteristics of basaltic rocks from the Nain ophiolite (Central Iran); constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model. Tectonophysics, V. 574–575, p. 92- 104.

Ghosh, B., Morishita, T. and Bhatta, K., 2013- Significance of chromian spinels from the mantle sequence of the Andaman ophiolite, India: paleogeodynamic implications.Lithos, V. 164- 167, p. 86- 96.

González-Jiménez, J. M., Griffin, W. L., Gervilla, F., Proenza, J. A., O'Reilly, S. Y. and Pearson, N. J., 2014- Chromitites in ophiolites: how, where, when, why?, Part 1. A review and new ideas on the origin and significance of platinum-group minerals. Lithos, V. 189, p. 127- 139.

Greenbaum, D., 1977- The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Economic Geology, V. 72, p. 1175- 1194.

Hassanipak, A. A. and Ghazi, A. M., 1999- Petrology, geochemistry and tectonic setting of the Khoy ophiolite, Northwest Iran. Journal of Asian Earth Science, V. 18, p. 43- 55.

Irvine, T. N., 1967- Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Canadian Journal of Earth Science, V. 4, p. 71- 103.

Irvine, T. N., 1977- Origin of chromitite in the Muskov intrusion and other stratiform intrusions: a new interpretation. Geology, V. 5, p. 273- 277.

Johnson, R. W., Jaques, A. L., Hickey, R. L., McKee, C. O. and Chappell, B. W., 1985- Manam Island, Papua New Guinea: Petrology and geochemistry of a low-Ti basaltic island-arc volcano. Journal of Petrology, V. 26, p. 283- 323.

Kamenetsky, V. S, Crawford, A. J. and Meffre, S., 2001- Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, V. 42, p. 655- 671.

Kelemen, P. B., 1990- Reaction between ultramafic wall rock and fractionating basaltic magma: part I, phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. Journal of Petrology, V. 31, p. 51- 98.

Lago, B., Rabinowicz, M. and Nicolas, A., 1982- Podiform chromite ore bodies: a genetic model. Journal of Petrology, V. 23, p. 103- 125.

Leblanc, M. and Ceuleneer, G., 1992- Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos, V. 27, p. 231- 257.

Leblanc, M., 1980- Chromite growth, dissolution and deformation from a morphological point of view: SEM investigation. Mineralium. Deposita, V. 15, p. 201- 210.

Melcher, F., Grum, W., Thalhammer, T. V.and Stumpfl, F., 1997- Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology, V. 38, p. 1419- 1458.

Mondal, S. K., Ripley, E. M., Li, C. and Frei, R., 2006- The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research, V. 148, p. 45- 66.

Najafzadeh, A. R. and Ahmadipour, H., 2014- Using platinum-group elements and Au geochemistry to constrain the genesis of podiform chromitites and associated peridotites from the Soghan mafic–ultramafic complex, Kerman, Southeastern Iran. Ore Geology Reviews, V. 60, p. 60- 75.

Najafzadeh, A. R., Arvin, M., Pan, Y. and Ahmadipour, H., 2008- Podiform Chromitites in the Sorkhband Ultramafic Complex, Southern Iran: Evidence for Ophiolitic Chromitite. Journal of Science (Islamic Republic of Iran), V. 19, p. 49- 65.

Nakamura, M., 1995- Residence time and crystallization history of nickeliferous olivine phenocrysts from the northern Yatsugatake volcanoes, Central Japan: application of a growth and diffusion model in the system Mg–Fe–Ni. Journal of Volcanology and Geothermal Research, V. 66, p. 81- 100.

Nicolas, A., 1989- Structures of Ophiolites and Dynamic of Oceanic Lithosphere. Dordreched: Kluwer Academic, 367.

Orberger, B., Lorand, J. P., Girardeau, J., Mercier, J. C. C. and Pitragool, S., 1995- Petrogenesis of ultramafic rocks and associated chromitites in the Nan Uttaradit ophiolite, Northern Thailand, Lithos 35(3):153- 182.

Ozawa, K., 1994- Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the Miyamori Ophiolite Complex, northeastern Japan. Journal of Petrology, V. 35, p. 647- 678.

Pagé, P. and Barnes, S. J., 2009- Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Québec, Canada. Economic Geology, V. 104, p. 997- 1018.

Paktunc, A. D., Hulbert, L. J. and Harris, D. C., 1990- Partitioning of the platinum-group and other trace elements in sulfides from the Bushveld Complex and Canadian occurrences of nickel-copper sulfides. Canadian Mineralogist, V. 28, p. 475- 488.

Peighambari, S., Uysal, I., Stosch, H. G., Ahmadipour, H. and Heidarian, H., 2016- Genesis and tectonic setting of ophiolitic chromitites fromthe Dehsheikh ultramafic complex (Kerman, southeastern Iran): Inferences from platinum-group elements and chromite compositions. Ore Geology Reviews, V. 74, p. 39- 51.

Roberts, S., 1988- Ophiolitic chromitite formation: a marginal basin phenomenon? Economic Geology, V. 83, p. 1034- 1036.

Rollinson, H., 2008- The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contributions to Mineralogy and Petrology, V. 156, p. 273- 288.

Saccani, E. and Photiades, A., 2005- Petrogenesis and tectono-magmatic significance of volcanic and subvolcanic rocks in the Albanide- Hellenide ophiolitic mélanges. Island Arc, V. 14, p. 494- 516.

Saccani, E., Beccaluva, L., Photiades, A. and Zeda, O., 2011- Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and subophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos, V. 124, p. 227- 242.

Shafaii Moghadam, H., Mosaddegh, H. and Santosh, M., 2013- Geochemistry and petrogenesis of the late Cretaceous Haji-Abad ophiolite (outer Zagros ophiolite belt, Iran): implications for geodynamics of the Bitlis–Zagros suture zone. Geological journal, V. 48, p. 579- 602.

Shahabpour, J., 2005- Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Science, V. 24, p. 405- 417.

Stocklin, J., 1977- Structural correlation of the alpine ranges between Iran and central Asia. Memoire Hors Ser. Société GéOlogique Fr., V. 8, p. 333- 353.

Takahashi, E., 1986- Melting of a dry peridotite KLB I up to 14 GPa: implications on the origin of the peridotitic upper mantle. Journal of Geophysical Research, v. 91, p. 9367- 9382.

Thayer, P. T., 1964- Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag district, Turkey. Economic Geology, V. 59, p. 1497- 1524.

Uysal, I., Tarkian, M., Sadiklar, M. B., Zaccarini, F., Meisel, T., Garuti, G. and Heidrich, S., 2009- Petrology of Al- and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry, 158, pages 659- 674.

Zaccarini, F., Garuti, G., Proenza, J. A., Campos, L., Thalhammer, O. A. R. and Aiglsperger, T. and Lewis, J., 2011- Chromite and platinum-group-elements mineralization in the Santa Elena ophiolitic ultramafic nappe (Costa Rica). geodynamic implications. Geologica Acta, V. 9, p. 407- 423.

Zhou, M. F. and Robinson, P. T., 1997- Origin and tectonic environment of podiform chromite deposits. Economic Geology, V. 92, p. 259–262.

Zhou, M. F., Robinson, P. T. and Bai, W. J., 1994- Formation of podiform chromites by melt/rock interaction in the upper mantle. Mineralium Deposita, V. 29, p. 98- 101.

Zhou, M. F., Robinson, P., Malpas, J. and Li, Z., 1996- Podiform chromites in the Luobusa ophiolite (Southern Tibet): Implications for melt rock interaction and chromite segregation in the upper mantle. Journal of Petrology, V. 37, p. 3- 21.