شکل ۱: ناحیه و محدوده های مورد بررسی با استفاده از مدل رقیمی ارتقاء منطقه (Digital Elevation Model-DEM)

شکل ۲: ناحیه مورد بررسی با استفاده از نقشه‌های توزیعگری از سال‌های ۱۹۹۰ و ۲۰۰۴.

شکل ۳: ناحیه مورد بررسی با استفاده از نقشه‌های ارتفاع منطقه (Digital Elevation Model-DEM)

شکل ۴: ناحیه مورد بررسی با استفاده از نقشه‌های ارتفاع منطقه (Digital Elevation Model-DEM)
(Mayer, 1990) پیک و ولسون (1971) و مایر (1990) از این دسته می‌توانند مورد استفاده قرار گیرند. در این مقاله، نگاهی به این است که چگونه مدل‌های استفاده‌رسانی می‌توانند کاربردی‌تر باشند.

(ب) اثر سطح‌های چهار گراف (SL)

SL مدل‌هایی است که به‌منظور مطالعه‌هایی از طرف جنگ‌های ایران مناسب هستند. در این مقاله، نکته اصلی نشان داده می‌شود که این مدل‌ها به‌طور کلی بهترین ابزاری هستند تا بررسی‌های مربوط به جنگ‌های مختلف را انجام دهند. از این رو، SL می‌تواند به عنوان یک ابزار مهم برای اطلاعات جنگی به‌کار برده شود.

(پ) اثر سطح‌های چهار گراف و بررسی‌های ایمنی

SL در بررسی‌های ایمنی نقش مهمی می‌آیند. این مقاله نشان می‌دهد که SL می‌تواند به عنوان یک ابزار چشمگیر برای بررسی‌های ایمنی به‌کار برده شود. در این مقاله، نکته اصلی نشان داده می‌شود که این مدل‌ها به‌طور کلی بهترین ابزاری هستند تا بررسی‌های ایمنی را انجام دهند. از این رو، SL می‌تواند به عنوان یک ابزار مهم برای اطلاعات ایمنی به‌کار برده شود.

(س) اثر سطح‌های چهار گراف و بررسی‌های ایمنی

SL در بررسی‌های ایمنی نقش مهمی می‌آیند. این مقاله نشان می‌دهد که SL می‌تواند به عنوان یک ابزار چشمگیر برای بررسی‌های ایمنی به‌کار برده شود. در این مقاله، نکته اصلی نشان داده می‌شود که این مدل‌ها به‌طور کلی بهترین ابزاری هستند تا بررسی‌های ایمنی را انجام دهند. از این رو، SL می‌تواند به عنوان یک ابزار مهم برای اطلاعات ایمنی به‌کار برده شود.
شاهرود و میکرویوردو به مصرف

\[T = \frac{D_a}{D_d} \]

در این رابطه دیابروت از فاصله بین خطوط مایه‌ی تاروده و دیابروت خاطر.

مایه‌ی تاروده، مقدار این شاخص بین صفر (بدون کجکشگی) و یک (بیشترین کجکشگی) می‌باشد. افزودن این شاخص به راه‌داده روزی می‌تواند به صورت یک برد در دو بعدی نشان دهد که طوری که در راستای بزرگی و روده دانه‌ها، جهت انحراف‌های کجکشگی‌های کجکشگی در آن بخش از روده نسبت به سطح برابر می‌دهد.

در منطقه مورد بررسی میزان کجکشگی، سطح طبقه‌بندی، Excel از همان چنین فرآیندی تا رفع کجکشگی می‌باشد (کلر و پنتر، 2002).

\[(Keller & Pinter, 2002) \]

\[(Hamdouni et al., 2007) \]

Excel توسط کاربران، به‌طور دستی، در اراضی عمومی و روده دانه‌ها، در این نهایی‌ترین شاخص را می‌دهد. هنگامی که کجکشگی‌های ویژه این کجکشگی‌ها به طور خاص می‌باشد.

\[(Vf) \]

\[(Vf) \]

\[(Bull and McFadden, 1977) \]

\[(Bull, 1978) \]

به شکل زیر توصیف شده است:

\[Vf = 2Vfw \left(\frac{Eld - Esc}{Eld} \right) \]

\[(Smf) \]

\[(Smf) \]

\[(Bull and McFadden, 1977; Bull, 1978) \]

\[(Bull, 1978) \]

به‌طور دستی، در اراضی عمومی و روده دانه‌ها، در این نهایی‌ترین شاخص را می‌دهد. هنگامی که کجکشگی‌های ویژه این کجکشگی‌ها به طور خاص می‌باشد.

\[(Bull and McFadden, 1977; Bull, 1978) \]

به‌طور دستی، در اراضی عمومی و روده دانه‌ها، در این نهایی‌ترین شاخص را می‌دهد. هنگامی که کجکشگی‌های ویژه این کجکشگی‌ها به طور خاص می‌باشد.

\[(Bull and McFadden, 1977; Bull, 1978) \]

به‌طور دستی، در اراضی عمومی و روده دانه‌ها، در این نهایی‌ترین شاخص را می‌دهد. هنگامی که کجکشگی‌های ویژه این کجکشگی‌ها به طور خاص می‌باشد.

\[(Bull and McFadden, 1977; Bull, 1978) \]

به‌طور دستی، در اراضی عمومی و روده دانه‌ها، در این نهایی‌ترین شاخص را می‌دهد. هنگامی که کجکشگی‌های ویژه این کجکشگی‌ها به طور خاص می‌باشد.

\[(Bull and McFadden, 1977; Bull, 1978) \]

به‌طور دستی، در اراضی عمومی و روده دانه‌ها، در این نهایی‌ترین شاخص را می‌دهد. هنگامی که کجکشگی‌های ویژه این کجکشگی‌ها به طور خاص می‌باشد.

\[(Bull and McFadden, 1977; Bull, 1978) \]

به‌طور دستی، در اراضی عمومی و روده دانه‌ها، در این نهایی‌ترین شاخص را می‌دهد. هنگامی که کجکشگی‌های ویژه این کجکشگی‌ها به طور خاص می‌باشد.
Iat (lat) سستي سخت عقل نسي (Iat) سستي سخت عقل نسي (lat) نسي سخت عقل عقل في دستوق (transverse river) نوبسنگان مقاله از سازمان زمین شناسی و اکتشافات علمی و دستورالعمل‌های دفتر خارجی کمک در نهایت به دست آمده در همایش‌های یافته‌ها تا خواندن آن آگاهانه به چند و اصلاحات دکتر فیزیولوژی. اجازه می‌دهد، منطق است.

سابکاری

نوشتگان مقاله از سازمان زمین شناسی و اکتشافات علمی و دستورالعمل‌های دفتر خارجی کمک در نهایت به دست آمده در همایش‌های یافته‌ها تا خواندن آن آگاهانه به چند و اصلاحات دکتر فیزیولوژی. اجازه می‌دهد، منطق است.

سبک

مطلب1 - موفقیت جریان‌ها و زمین شناسی ناحیه مورد مطالعه (ایشگاه ملی داده‌های علمی و دیجیتال)
جدول 1- تقسیم‌بندی شاخ‌های زمین‌ریزی توسط (Hamdouni et al., 2007)

<table>
<thead>
<tr>
<th>شکل حوضه (Bn)</th>
<th>زهکشی (Af)</th>
<th>طول-شب (SL)</th>
<th>به درازایی آن (Vv)</th>
<th>رده</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4</td>
<td>Af-5-15</td>
<td>> 0.15</td>
<td>میزان یپره‌ی بالا</td>
<td>1</td>
</tr>
<tr>
<td>4-6</td>
<td>Af-5-15</td>
<td>0.15-0.1</td>
<td>میزان یپره‌ی پایین</td>
<td>2</td>
</tr>
<tr>
<td>> 6</td>
<td>Af-5-7</td>
<td>> 0.1</td>
<td>بدون یپره‌ی</td>
<td>3</td>
</tr>
</tbody>
</table>

شکل 2- زیرحوضه‌ها و آبراه‌های به دست آمده از مدل ارتفاعی- رقومی حوضه‌ی زهکشی طاقن‌نشین، شاهرود و سفیدرود

شکل 3- پراکندگی مقدار بالای SL و مقاومت زمین‌شاسی در حوضه طاقن‌نشین، شاهرود و سفیدرود
شکل 11- پراکندگی شاخص بیچ و خم پیشانی کوه (Smf)

شکل 10- خطوط مستقیم به عنوان پیشانی‌های گسلی منطقه برای محاسبه مقادیر شاخص پیشانی کوه (Smf)

شکل 12- a) بردارهای عدم تقارن در حوضه و رودخانه‌های طالقانرود و ارتباط طول آنها با گسل‌های ناحیه طول بردارها مناسب با میزان کج‌گرایی است

شکل 12- b) بردارهای عدم تقارن در حوضه و رودخانه‌های طالقانرود و ارتباط طول آنها با گسل‌های ناحیه طول بردارها مناسب با میزان کج‌گرایی است

شکل 13- پراکندگی شاخص زمین ساخت فعال نسبی Ist در حوضه و رودخانه‌های طالقانرود، شاهروود و سفیدرود و ارتباط آن با گسل‌های ناحیه

شکل 12- c) بردارهای عدم تقارن در حوضه و رودخانه‌های سفیدرود و ارتباط طول آنها با گسل‌های ناحیه طول بردارها مناسب با میزان کج‌گرایی است
References

Yousefi, E. & Fridborg, J. L., 1978- Aeromagnetic map of Qazvin, Gelogical Survey of Iran, Qazvin- Scale 1:250000.

Cannon, P. J., 1976- Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin. Oklahoma Geology Notes, 36(1), 3-16.

استفاده از روش فرکتالی عیار - حجم در جدایی زونه در کانسارهای پورفیری

یمنام تفتی

1 گروه مهندسی اکتشاف، معدن. واحد تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 گروه زیست‌شناسی، واحد علم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 دانشکده معدن، دانشگاه علوم معیشتی، تهران، ایران
4 گروه زیست‌شناسی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران
5 مرکز پژوهش‌های زمین ویژه و معدن، دانشگاه خلیج فارس، بندرعباس، ایران
6 نظریه دیسک و ریپارد، 1991. ترجمه و دریافت تاریخ 98/03/24

چکیده

شیوه‌گرایی زونه‌های کانساره در کانسارهای پورفیری، یکی از مهم‌ترین اهداف اکتشافات کانساره است. زیرا این امر، بهبود شیوه‌گرایی و بافت‌گرایی در زونه‌های کانساره‌ای و جایگاه‌گیری دست‌العمل‌ها به‌ملت‌های کانساره‌ای نیز در زونه‌های پورفیری، نقش بازی می‌کند. در این راستا، درک از مکان‌گذاری، ارزیابی و بافت‌گرایی دقیق، از زونه‌های کانساره‌ای می‌تواند به بهبود شیوه‌گرایی و بافت‌گرایی در زونه‌های کانساره‌ای و جایگاه‌گیری دست‌العمل‌ها در زونه‌های پورفیری کمک کند.

کلیدواژه‌ها: روش فرکتالی عیار - حجم، کانسارهای پورفیری، زونه‌بندی، چهارپویه، کرمان

*پیام‌رسان مسئول: یمنام تفتی

1 مقصر

نوع زونه‌های گیونک از کانساره در کانسارهای پورفیری یوزه‌های پورفیری و پورفیروداد زنده، برای تحقیق و تحقیق، روی اکتشافات در زونه‌های کانساره‌ای و تحقیق گام‌های تصمیم‌گیری در این مورد بر مبنای نتایج‌های اکتشافات در زونه‌های پورفیری است. در این راستا، درک از مکان‌گذاری، ارزیابی و بافت‌گرایی دقیق، از زونه‌های کانساره‌ای می‌تواند به بهبود شیوه‌گرایی و بافت‌گرایی در زونه‌های کانساره‌ای و جایگاه‌گیری دست‌العمل‌ها در زونه‌های پورفیری کمک کند. در این راستا، درک از مکان‌گذاری، ارزیابی و بافت‌گرایی دقیق، از زونه‌های کانساره‌ای می‌تواند به بهبود شیوه‌گرایی و بافت‌گرایی در زونه‌های کانساره‌ای و جایگاه‌گیری دست‌العمل‌ها در زونه‌های پورفیری کمک کند. در این راستا، درک از مکان‌گذاری، ارزیابی و بافت‌گرایی دقیق، از زونه‌های کانساره‌ای می‌تواند به بهبود شیوه‌گرایی و بافت‌گرایی در زونه‌های کانساره‌ای و جایگاه‌گیری دست‌العمل‌ها در زونه‌های پورفیری کمک کند. در این راستا، درک از مکان‌گذاری، ارزیابی و بافت‌گرایی دقیق، از زونه‌های کانساره‌ای می‌تواند به بهبود شیوه‌گرایی و بافت‌گرایی در زونه‌های کانساره‌ای و جایگاه‌گیری دست‌العمل‌ها در زونه‌های پورفیری کمک کند. در این راستا، درک از مکان‌گذاری، ارزیابی و بافت‌گرایی دقیق، از زونه‌های کانساره‌ای می‌تواند به بهبود شیوه‌گرایی و بافت‌گرایی در زونه‌های کانساره‌ای و جایگاه‌گیری دست‌العمل‌ها در زونه‌های پورفیری کمک کند.
Geomorphic Signatures of Active Tectonics in the Talaghan Rud, Shah Rud and SefidRud Drainage Basins in Central Alborz, N Iran

Z. Mardani*, M. Ghorashi1, M. Arian1 & Kh. Khosrotehrani1
1 Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
2 Islamic Azad University (IAU), North Tehran Branch, Tehran, Iran
3 Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

Received: 2009 April 22 Accepted: 2009 December 02

Abstract

Geomorphic indices of active tectonics are useful tools to analyze the influence of active tectonics. These indices have the advantage of being calculate from ArcGIS and remote sensing packages over large area as a reconnaissance tool to identify geomorphic anomalies possibly related to active tectonics. This is particularly valuable in west-central Alborz where relatively little work on active tectonics based on this method was done, so this method is new and useful. Based upon values of the stream length-gradient index (SL), drainage basin asymmetry (Af), hypsometric integral (Hi), ratio of valley-floor width to valley height (Vf), index of drainage basin shape (Bs), and index of mountain front sinuosity (Smf), we used an overall index (Iat) that is a combination of the other indices that divides the landscape into four classes of relative tectonic activity. The moderate class of Iat is mainly in the south of Manjel dam, while the rest of the study area has high active tectonics (shahrud drainage basin and sefidrud drainage basin), and high to very high (Taleghan and Alamut drainage basin). The stream network asymmetry (T) was also studied using morphometric measures of Transverse Topographic Symmetry. Analysis of the drainage basins and subbasins in the study area results in a field of T-vectors that defines anomalous zone of the basin asymmetry. A comparison of T index clearly coincide with the values and classes of active tectonic indices and the overall Iat index.

Keywords: Tectonic Geomorphology, Geomorphic Indices of Active Tectonics, Drainage Basin, Asymmetry, Central Alborz.

Introduction to New Concentration-Volume Fractal Method for Separation Zones in Porphyry Deposits

P. Afzal*, A. Khakzad1, P. Moarefvand1, N. Rashid Nezhad Omran1 & Y. Fadakar Alghalandis4
1Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2Geology Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Mining and Metallurgy Faculty, Amirkabir University of Technology, Tehran, Iran
4Geology Department, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
5WH Bryan Mining & Geology Research Centre, SMI, the University of Queenslands, Brisbane, Australia

Received: 2009 April 16 Accepted: 2009 October 27

Abstract

Determination of different zones in porphyry deposits is one of important goals in their exploration because this operation especially determination supergene zone is important for economical study in these deposits. Traditional methods based on alterations and mineralogical studies are not proper in many cases because these methods are based on petrographical and mineralog graphical studies, only. Later methods were introduced basis fluid inclusions and isotopes are indirect methods and applied for alterations separation. Fractal methods are applicable in surface geological and geochemical studies for many reasons such as using all data, according to spatial distribution and anomalies geometrical shapes. In this research, concentration-volume method entitled new fractal method is introduced for separation of supergene, hypogene, oxidant and host rock based on major element grade in porphyry deposits. Mathematical base of this method by using of power-law function and partition function for fractal and multifractal modeling, concentration-volume is used for zones separation in Chah-Firuzeh Cu porphyry deposit in Shahrbabak in Kerman province. First, Cu distribution in this deposit was evaluated by geostatistical methods and concentration-volume logarithmic diagram that break points show grade boundaries of different zones and boundary between mineralization and host rock. Also, alteration, mineralogical and zonation models were constructed based on geological observation and compared by results from concentration-volume fractal method. Separated zones by this