زمین‌شناسی، دگرسانی، کانه‌زایی و ژئوشیمی کانسار اپی‌ترمال نقره- مس نارباغی شمالی، شمال‌خاور ساوه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه زمین‌شناسی اقتصادی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار، گروه زمین‌شناسی اقتصادی، دانشگاه تربیت مدرس، تهران، ایران

3 استاد، گروه علوم زمین، دانشگاه نیوبرانزویک، فردریکتون، کانادا

4 استاد، دانشکده منابع زمین، دانشگاه علوم زمین، ووهان، چین

چکیده

کانسار نارباغی شمالی در 26 کیلومتری شمال‌خاور ساوه و در بخش میانی کمربند ماگمایی ارومیه- دختر واقع شده است. در این محدوده، نفوذ توده نیمه‌ژرف به سن بعد از ائوسن (الیگوسن- میوسن) به درون واحدهای آتش‌فشانی- رسوبی ائوسن، سبب ایجاد زون‌های دگرسانی وسیع فیلیک، آرژیلیک، پروپیلیتیک، تورمالینی و تشکیل کانه‌زایی نقره- مس تیپ اپی‌ترمال شده است. سنگ‌های نفوذی این محدوده دارای طیف ترکیبی دیوریت- مونزودیوریت با ماهیت کالک‌آلکالن بوده که در موقعیت زمین‌ساختی مربوط به کمان آتش‌فشانی در ارتباط با حاشیه فرورانش اقیانوس نئوتتیس به زیر خردقاره ایران مرکزی تشکیل شده‌اند. کانه‌زایی نقره- مس در کانسار نارباغی شمالی به شکل رگه‌ای و رگه‌های برشی با میزبان اصلی آندزیت، توف خرده‌سنگی، دیوریت و مونزودیوریت رخ داده است. کانی‌شناسی ماده معدنی شامل کانی‌های سولفیدی کالکوپیریت، پیریت و اسفالریت، کانی‌های سولفوسالتی تنانتیت و تتراهدریت، کانی‌های اکسیدی گوتیت و هماتیت و کانی‌های کربناتی مالاکیت و آزوریت است. همچنین دگرسانی در کانسار نارباغی شمالی دارای یک الگوی تمرکز نسبی است و دگرسانی‌های آرژیلیک، سریسیتی و کلسیتی در ارتباط نزدیک با بخش‌های پرعیار نقره و مس هستند و دگرسانی تورمالینی و پروپیلیتیک بیشتر در حاشیه توده معدنی گسترش دارد. با توجه به ویژگی‌های اصلی کانه‌زایی از جمله محیط ژئودینامیکی، سنگ میزبان، کانی‌شناسی، محتوای فلزی، ژئومتری ماده معدنی، دگرسانی و مقایسه این ویژگی‌ها با ویژگی‌های بنیادین کانسارهای اپی‌ترمال، می‌توان کانسار نارباغی شمالی را در رده کانه‌زایی رگه‌ای اپی‌ترمال سولفیداسیون حدواسط قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Geology, alteration, mineralization and geochemistry of the North Narbaghi epithermal Ag-Cu deposit, northeast Saveh

نویسندگان [English]

  • Negin Fazli 1
  • Majid Ghaderi 2
  • David Lentz 3
  • Jianwei Li 4
1 M.Sc. Graduate, Department of Economic Geology, Tarbiat Modares University, Tehran, Iran
2 Associate Professor, Department of Economic Geology, Tarbiat Modares University, Tehran, Iran
3 Professor, Department of Earth Sciences, University of New Brunswick, Fredericton, Canada
4 Professor, School of Earth Resources, China University of Geosciences, Wuhan, China
چکیده [English]

The North Narbaghi deposit is located approximately 26 km northeast of the city of Saveh in the central part of Urumieh-Dokhtar magmatic arc of Iran. In this area, the Oligo-Miocene intrusive rocks cut the Eocene volcano-sedimentary rocks intruding into the surrounding rocks causing extensive alteration zones such as phyllic, argillic, propylitic and tourmalinization. The intrusive rocks include diorite, monzodiorite, megadiorite with calc-alkaline nature which formed as a result of subduction of the Neo-Tethyan oceanic crust beneath the Central Iranian block. The epithermal Ag-Cu mineralization at North Narbaghi, with vein-veinlet and breccia geometries is mainly hosted in andesite, lithic tuff, diorite and monzodiorite. At the North Narbaghi deposit, ore minerals can be divided into four groups: sulfides (chalcopyrite, pyrite, sphalerite, bornite), sulfosalts (tetrahedrite, tennantite), carbonates (azurite, malachite) and oxides (hematite, goethite). The alteration shows a relative concentration pattern at the North Narbaghi deposit; the argillic, sericitic and calcite alteration types are in close connection with the Ag-Cu mineralization and the propylitic and tourmalinization alteration types occur at the margin of mineralization. The main characteristics of mineralization such as geodynamic environment, host rocks, mineralogy, metal content, geometry, alteration and comparing these features with the characteristics of epithermal deposits, show that the North Narbaghi deposit can be classified as a typical intermediate-sulfidation (IS) epithermal mineralization.

کلیدواژه‌ها [English]

  • North Narbaghi deposit
  • Epithermal
  • vein-veinlet
  • Hydrothermal alteration
  • Urumieh-Dokhtar

کتابنگاری

آقانباتی، س. ع.، 1383- زمین‌شناسی ایران. سازمان زمین‌شناسی و اکتشافات مواد معدنی کشور، 586 ص.

شمعانیان، غ.، 1382- مطالعه دگرسانی و کانی­سازی گرمابی فلزات پایه و گرانبها در منطقه معلمان، جنوب‌شرق دامغان، استان سمنان، رساله دکترا، دانشگاه شهید بهشتی.

شیرخانی، م.، 1385- کانی­شناسی، ژئوشیمی و ژنز کانه­زایی روی- سرب و عناصر همراه در کانسار آی­قلعه­سی، جنوب- جنوب‌خاوری تکاب، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس.

صالحی، ط.، 1387- کانی­شناسی، ژئوشیمی و ژنز کانسار سرب و روی (نقره) گمیش‌تپه، جنوب‌غرب زنجان، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس.

عمیدی، س.، شهرابی، م. و ناوی، ی.، 1384- نقشه­ زمین­شناسی 100000:1 زاویه، سازمان زمین­شناسی و اکتشافات معدنی کشور.

فضلی، ن. و قادری، م.، 1393- سنگ­نگاری، دگرسانی و کانه­زایی کانسار مس- نقره نارباغی، شمال‌ شرق ساوه، بخش میانی کمان ماگمایی ارومیه- دختر. هجدهمین همایش انجمن زمین­شناسی ایران، دانشگاه تربیت مدرس، تهران، ایران.

فضلی، ن.، 1394- زمین­شناسی، کانی­شناسی، ژئوشیمی و ژنز کانسار اپی­ترمال نارباغی شمالی، شمال­شرق ساوه، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس.

فضلی، ن.، قادری، م. و مغفوری، س.، 1393- کانه­زایی مس چینه­کران تیپ مانتو نارباغی شرقی در توالی آتشفشانی- رسوبی ائوسن، شمال­شرق ساوه. سی و سومین گردهمایی علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران.

نوری اصل، ف.، شمعانیان، ع.، عظیم محسنی، م. و جعفری، م.، 1391- کانی­سازی اپی­ترمال آنتیموان در منطقه ارغش: کانی­شناسی، دگرسانی و زمین­شیمی. مجله بلورشناسی و کانی­شناسی ایران، سال بیستم شماره 2، صص. 229 تا 240.

 

References

Alavi, M., 1991- Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran.Geological Society of America Bulletin 103: 983- 992.

Alderton, D. H. M., Pearce, J. A. and Potts, P. J., 1980- Rare earth element mobility during granite alteration: evidence from south-east England. Earth and Planetary Science Letters 49: 149- 165.

Arribas, A., Jr., Cunningham, O., Rytuba, J., Rye, O., Kelly, W., Podwysocki, W., Mckee, E. and Tosdal, R.,1995- Geology, geochronology, fluid inclusions, and isotope geochemistry of Rodalquilar Au alunitedeposit, Spain. Economic Geology 90: 795-822.

Bierlein, F. P., Waldron, H. M. and Arne, D. C., 1999- Behaviour of rare earth and high field strength elements during hydrothermal alteration of meta-turbidites associated with mesothermal gold mineralization in central Victoria, Australia. Journal of Geochemical Exploration 67: 109- 125.

Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D. and Steele-MacInnis, M., 2014- Fluid Inclusions in Hydrothermal Ore Deposits. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, v. 13, p. 119- 142. Oxford, Elsevier.

Bonham, H. F. Jr., 1986- Models for volcanic-hosted epithermal precious metal deposits: A review: Volcanism, Hydrothermal Systems and Related Mineralisation, 5th International Volcanological Congress, University of Auckland, Auckland, New Zealand, Proceedings, p. 13- 17.

Boynton, W. V., 1984- Cosmochemistry of the rare earth elements: meteorite studies, in P. Henderson, ed. , Rare Earth Element Geochemistry, Amsterdam, Elsevier, p. 63-114.

Corbett, G. and Leach, T., 1997- Southwest pacific rim gold-copper systems: Structure, Alteration, and Mineralization. 5/97 Edn.

Cox, K. G., Bell, J. D. and Pankhurst, R. J., 1979- The Interpretation of Igneous Rocks, London. Allen and Unwin, 450 p.

Deen, J. A., Rye, R. O., Munoz, J. L. and Drexler, J. W., 1994- The magmatic hydrothermal system at Julcani, Peru: Evidence from fluid inclusions and hydrogen and oxygen isotopes. Economic Geology 89: 1924- 1938.

Ghaderi, M., Fazli, N., Yan, S., Lentz, D. R. and Li, J. W., 2016- Fluid inclusion studies on North Narbaghi intermediate sulfidation epithermal Ag-Cu deposit, Urumieh-Dokhtar magmatic arc, Iran. World Multidisciplinary Earth Sciences Symposium (WMESS 2016), Prague, Czech Republic, 5-9 Sep. 2016, Abstract Collection Book, p. 141.

Gramaccioli, C. M., Diella, V. and Demartin, F., 1999- The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: Some complexes in minerals. European Journal of Mineralogy 11: 983- 992.

Heald, P., Foley, N. K. and Hayba, D. O., 1987- Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adularia-sericite type. Economic Geology 82: 1- 26.

Hedenquist, J. W., 1987- Mineralization associated with volcanic-related hydrothermal systems in the Circum- Pacific basin. Transactions of the Fourth Circum Pacific Conference on Energy and Mineral Resources Conference, Singapore, American Association of Petroleum Geologists 513- 524.

Hedenquist, J. W., Arribas, J. A. and Gonzalez-Urein, E., 2000- Exploration for epithermal gold deposits. Society of Economic Geology, Review 13: 254- 277.

Hedenquist, J. W., Sillitoe, R. H. and Arribas, A., 2004- Characteristics of and exploration for high-sulfidation epithermal Au-Cu deposits. In: Cooke, D. R., Deyell, C. L., Pongratz, J., (eds.), 24 Carat Gold Workshop, Centre for Ore Deposit Research, Special Publication 5: 99- 110.

Irvine, T. N. and Baragar, W. R. A., 1971- A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8: 523- 548.

Jebrak, M., 1997- Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geology Reviews 12: 111- 134.

Kikawada, Y., Ossaka. T., Oi, T. and Honda, T., 2001- Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water, Chemical Geolology, 176:137- 149.

Lowder, G. G. and Dow, J. A. S., 1978- Geology and exploration of porphyry copper deposits in North Sulawesi, Indonesia: Economic Geology 73: 628- 644.

Moncada, D., Mutchler, S., Nieto, A., Reynolds, T. J., Rimstidt, J. D. and Bodnar, R. J., 2012- Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration 114: 20- 35.

Palacios, C. M., Hein, U. F. and Dulski, P., 1986- Behavior of rare earth elements during hydrothermal alteration atthe Buena Esperanza copper–silver deposit, north Chile. Earth and Planetary Science Letters 80: 208- 216.

Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25: 956- 983.

Petersen, U., Noble, D., Arenas, M. and Goodell, P., 1977- Geology of the Julcani mining district, Peru. Economic Geology 72, 931- 949.

Phillipson, S. E. andRomberger, S. B., 2004- Volcanic stratigraphy, structural controls, and mineralization in the San Cristobal Ag–Zn–Pb deposit, southern Bolivia. Journal of South American Earth Sciences 16: 667- 683.

Pirajno, F., 1992- Hydrothermal mineral deposits, principles and fundamental concepts for the exploration geologist. Springer, 706 p.

Roedder, E., 1984- Fluid inclusions. Reviews in Mineralogy, 12, 644 p.

Rollinson, H. R., 1993- Using Geochemical Data: Evaluation, Presentation, Interpretation. London, UK, 652 p.

Shafiei, B., 2010- Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications. Ore Geology Reviews 38: 27- 36.

Sillitoe, R. H. and Hedenquist, J. W., 2003- Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious-metal deposits. In: Simmons, S. F., Graham, I. (eds.) Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earths.

Sillitoe, R. H., 1985- Ore-related breccias in volcanoplutonic arcs. Economic Geology 80: 1467- 1514.

Sun, S. S. and McDonough, W. F., 1980- Magmatism in the ocean basins. Geological Society of London Special Publication 42: 313- 345,

Yang, F., Mao, J., Bierlein, F., Pirajno, F., Zhao, C., Ye, H. and Liu, F., 2009- A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in north Xinjiang, China, Ore Geology Reviews 35: 217- 234.

Yilmaz, H., Oyman, T., Arehart, G. B., Colakoglu, A. R. and Billor, Z., 2007- Low-sulfidation type Au-Ag mineralization at Bergama, Izmir, Turkey. Ore Geology Reviews 32: 81- 124.