%0 Journal Article %T Petrography and Alteration of Chehelkureh Copper Deposit: Mass Balance of Elements and Behavior of REE %J Scientific Quarterly Journal of Geosciences %I Geological Survey of Iran %Z 1023-7429 %A Maanijou, M. %A Rasa, I. %A Lentz, D. %D 2008 %\ 05/21/2008 %V 17 %N 67 %P 86-101 %! Petrography and Alteration of Chehelkureh Copper Deposit: Mass Balance of Elements and Behavior of REE %K copper %K Turbidite %K Stocks %K Mass Balance %K Chehelkureh Ore Deposit %K Iran %R 10.22071/gsj.2009.57786 %X      Chehelkureh copper deposit is located in Kuh-e-Lunka area, 120 km NW of Zahedan (SE of Iran). The host rocks of mineralization are intercalated Eocene turbiditic greywackes, siltstones, and shales (flysch). They are folded with N-S trend and the eastern limb of this fold has been drag folded. Several stocks and dykes of granodiorite to quartz monzodiorite and granite compositions intruded the turbidites, converting them locally to hornfels. These intrusions are oriented parallel to the major NW-SE fault set. The Chehelkureh ore field comprises numerous irregular lenses and veins. The ore field extends for 1500m in N23°W direction, and is displaced by late brittle faults striking roughly E-W. The fault and fracture filling ores include quartz, dolomite, ankerite, siderite, calcite, and lesser amounts of pyrrhotite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena, Se-rich galena, marcasite, molybdenite, ilmenite, and rutile. Assay data from 39 drill holes show high contents of base metals, with an average of 1.48% Cu, 1.77% Zn, 0.85% Pb (4.1% Cu+Zn+Pb), and silver (average 22 ppm in 45 samples). The ores are not so enriched in gold (0.14 ppm on average in 45 samples). A composite sample of least-altered greywackes and shales (host rocks) is used for comparison with mineralized samples. Mass-balance calculations were carried out to quantify chemical changes resulting from different alteration episodes. With the low solubility and low variance of Al (Al2O3) in moderately altered sedimentary country rocks compared with many other immobile trace components, Al2O3 is used as an immobile component for mass-balance calculations. There is a net mass increase in Fe2O3T, and MgO and a net mass decrease in Na2O, CaO, K2O, and SiO2 with chloritization. Carbonatization shows Fe2O3T, and MgO enrichment and SiO2 and Na2O depletion, implying that ankerite, siderite and dolomite are predominant phases. SiO2 is enriched in silicified samples and depleted in other alteration types. There is no mass change in Cu, Pb and Zn with kaolinization, but these elements are enriched in other alteration types. Hg is enriched in all alteration types except kaolinization, which may even show a slight depletion. Samples from gossan with silicification showed an increase in SiO2, Fe2O3T, Cu, Pb, Hg, and Zn and a decrease in MgO, Na2O, CaO, and K2O. Some trace and major elements have high variance in different alterations and are more complicated to interpret, such as P2O5, MnO, Ni, Co, and Rb. The REE contents of the composite host rock sample are enriched in the LREE relative to the HREE and moderately depleted in Eu and Ho. As a whole, samples with kaolinization and carbonatization (ankerite and siderite) have been enriched in REE contents and other wallrock alteration, including chloritization, dolomitization, kaolinization, minor sericitization, and silicification, are depleted in REE. SEM-EDS evidence indicates that enrichment of REE-bearing phosphates, such as monazite, occurred with carbonatization and kaolinization assemblages.   %U http://www.gsjournal.ir/article_57786_ba8bc176987c51b4611d6bbd09eadb63.pdf