Document Type : Original Research Paper

Authors

1 M.Sc., Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

2 Ph.D., Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

Abstract

Abgareh copper deposit located in 140 km southwest of shahrood and part of a volcanic-sedimentary Torud-Chah shirin belt that has facies in the northern edge Structural-sedimentary zones of Central Iran. Field and petrographical studies, deposit area, consist of andesite, basaltic andesite and basalt and contains less includes tuffit crystal that indicate middle–upper Eocene with with argillitic, sericitic, silicic, carbonatic, chloritic and iron oxides alterations. According to the field observations and mineralogical studies, the mineralization in the region was carried out in two stages: hypogene and supergene and weathering. Hypogen zone minerals are generally pyrite, chalcopyrite and bornite. Because of existence in oxidizing-supergene environment , nearly almost Cu-bearing minerals of the main stage of mineralization have been replaced by secondary Cu minerals such as chalcocite, covellite, malachite and chrysocolla. Fluid inclusion data shows in the temperature range from 145 to 217 °C and salinity between 3.73 and 9.84 Wt%NaCl and depths less than 390 m. The host rocks, ore mineralogy, ore structures and textures, and fluid inclusions characteristics and comparison with similar epithelial deposits indicate that the Abgareh vein system is formed in a low-sulfidation epitermal environment.

Keywords

Main Subjects

References
Agangi, A. and Reddy, S. M., 2016- Open-system behaviour of magmatic fluid phase and transport of copper in arc magmas at Krakatau and Batur volcanoes, Indonesia, Journal of Volcanology and Geothermal Research, 327, pp 669-686. DOI: 10.1016/j.jvolgeores.2016.10.006.
Akaryalı, E. and Tüysüz, N., 2013- The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey), Geoscience Frontiers, 4(4), pp 409-421. DOI: 10.1016/j.gsf.2012.12.002.
Al-Hwaiti, M., Zoheir, B., Lehmann, B. and Rabba, I., 2010- Epithermal gold mineralization at Wadi Abu Khushayba, southwestern Jordan- Ore Geology Reviews, 38(1-2), pp 101-112. DOI: 10.1016/j.oregeorev.2010.07.002.
Bodnar, R. J., 1983- A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids, Economic Geology, 78(3), pp 535-542. https://doi.org/10.2113/gsecongeo.78.3.535.
Davidson, J. P., 1996- Deciphering mantle and crustal signatures in subduction zone magmatism” Subduction top to bottom, pp. 251-262. https://doi.org/10.1029/GM096p0251.
Esteban-Arispe, I., Velasco, F., Boyce, A. J., Morales-Ruano, S., Yusta, I. and Carrillo-Rosúa, J., 2016- Unconventional non-magmatic sulfur source for the Mazarrón Zn–Pb–Cu–Ag–Fe epithermal deposit (SE Spain), Ore Geology Reviews, 72, pp 1102-1115. DOI: 10.1016/j.oregeorev.2015.10.005‏.
Haas, J. L., 1971- The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Economic Geology, 66(6), pp 940-946. DOI: 10.2113/gsecongeo.66.6.940
Hastie, A. R. Kerr, A. C. Pearce, J. A. and Mitchell, S. F., 2007- Classification of alteredvolcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram, Journal of Petrology, 48, pp 2341-2357. DOI:10.1093/petrology/egm062.
Huber, H. and Stocklin, J., 1959- Geological report on the Troud-Moaleman area. N.I.O.C.
Lanfranchini, M. E. Etcheverry, R.O. De Barrio, R. E. and Hernández, C. R., 2013- Precious metal-bearing epithermal deposits in western Patagonia (NE Lago Fontana region), Argentina, Journal of South American Earth Sciences, 43, pp 86-100. DOI: 10.1016/j.jsames.2013.01.005.
Large, R. R., 1989- Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models, Econ. Geol, 6, pp 520-535.‏ https://doi.org/10.5382/Mono.06.40.
Mehrabi, B., Ghasemi, S. M. and Tale, F. E., 2015- Structural control on epithermal mineralization in the Troud-Chah Shirin belt using point pattern and Fry analyses, north of Iran, Geotectonics, 49(4), pp 320-331. DOI: 10.1134/S001685211504007X.
Ramdohr, P., 1980- The ore minerals and their intergrowths, 2nd end” Vol. 2, International Series in Earth Sciences, pp 1075. DOI: 10.1016/b978-0-08-011635-8.50007-3
Shepherd, T. J. Rankin, A. H. and Alderton, D. H., 1985- A practical guide to fluid inclusion studies- Blackie. https://trove.nla.gov.au/version/22206800
Sillitoe R. H. and Hedenquist, J. W., 2003- Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, Special Publication-Society of Economic Geologists, 10, pp 315-343. https://sociedadgeologica.cl/wp-content/.../07/SillitoeHedenquist2003SP10Galley.pdf
Sun, S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts : Implications for mantle composition and processes, In: Saunders,A.D., Norry,M.J., (Eds.), magmatism in the Oceans Basins, Geological society of London Special Publication, 42, pp 313 - 345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Wilkinson, J. J., 2001- Fluid inclusions in hydrothermal ore deposits, Lithos, 55(1-4), pp 229-272. DOI: 10.1016/s0024-4937(00)00047-5
Winchester, J. A. and Floyd, P. A., 1977- Geochemical discrimination of different magma series and their differentiation products using immobile elements” Chemical geology, 20, pp 325-343. DOI: 10.1016/0009-2541(77)90057-2.
Wood, D. A., 1980- The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province, Earth and planetary science letters, 50(1), pp 11-30. DOI: 10.1016/0012-821x(80)90116-8  
Zhong, J. Chen, Y. J. Qi, J. P. Chen, J. Dai, M. C. and Li, J., 2017- Geology, fluid inclusion and stable isotope study of the Yueyang Ag-Au-Cu deposit, Zijinshan orefield, Fujian Province, China” Ore Geology Reviews, 86, pp 254-270. DOI: 10.1016/j.oregeorev.2017.02.023