نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، ایران

2 دانشیار، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، ایران

3 استاد، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، ایران

4 دانشیار، گروه زمین‎شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان، ایران

چکیده

منطقه حرجند در شمال خاوری کرمان در پهنه ایران مرکزی و کمربند تکتونیکی کاشمر-کرمان قرار دارد. در این منطقه سنگ‌های گابرویی به همراه دایک‌های دلریتی در داخل سنگ‌های رسوبی سری دسو با سن اینفراکامبرین نفوذ کرده‌اند. گابروها و دایک‌های دلریتی ترکیب تقریباً یکسانی داشته و دارای کانی‌های اصلی کلینوپیروکسن و پلاژیوکلاز و کانی‌های فرعی اولیوین، آمفیبول، آپاتیت و کانی‌های کدر می‌باشند. بافت‌های موجود در این سنگ‌ها گرانولار متوسط تا ریز بلور و افیتیک تا ساب‌افتیک هستند. ترکیب پلاژیوکلاز این سنگ‌ها در گستره لابرادوریت (An53-67) قرار می‌گیرد، اما بواسطه سوسوریتی شدن در گابروها ترکیب اولیگوکلاز و در دایک‌های دلریتی ترکیب آلبیتی را نشان می‌دهند. ترکیب کانیایی کلینوپیروکسن‌ها از نوع کلینوپیروکسن‌های منیزیم-کلسیم-آهن‌دار و از نوع دیوپسید و اوژیت بوده و توزیع Al در ساختار کلینوپیروکسن‌ها تبلور آنها از یک ماگمای با فشار بخار آب متغیر و کمتر از 10 درصد را نشان می‌دهد. بر پایه ترکیب شیمیایی کلینوپیروکسن‌ها ماگمای سازنده سنگ‌ها غالبا ماهیت تولئیتی و کمتر آلکالن داشته و از لحاظ جایگاه زمین ساختی در ارتباط با محیط‌های درون صفحه‌ای هستند. ارزیابی زمین دما-فشارسنجی کلینوپیروکسن‌ها دمای تشکیل 1127 تا 1200 درجه سانتی‌گراد و فشار کمتر از 6 کیلوبار را برای این سنگ های مافیک نشان می‌دهد.

کلیدواژه‌ها

موضوعات

کتابنگاری
آهنکوب، م.، شبانیان، ن.، داودیان، ع.ر. و مکی­زاده، م.ع.، 1391- شیمی کانی کلینوپیروکسن در سنگ­های گابرویی گنبد نمکی دره­بید، چهارمحال و بختیاری، ایران، مجله بلورشناسی و کانی­شناسی ایران، شماره1، ص. 153 تا 168.
حاجی­میرزاجان، ح.، ملک­زاده شفارودی، آ.، همام، س. م. و حیدریان شهری، م. ر.، 1396- ژئوشیمی و خاستگاه کانسنگ مگنتیت-اسپکیولاریت آپاتیت­دار کانسار آهن ده­زمان، شمال­شرقی زون تکتونیکی کاشمر-کرمان، مجله زمین­شناسی کاربردی پیشرفته، شماره 26.
 
References
Aghanabati, A., 2004- Geology of Iran: Geological Survey of Iran.
Akinin, V. V., Sobolev, A. V., Ntaflos, T. and Richter, W., 2005- Clinopyroxene megacrysts from Enmelen mela nephelinitic volcanoes (Chukchi Peninsula, Russia): application to compositionand evolution of mantle melts. Contributions to Mineralogy and Petrology, 150:85–101. DOI: 10.1007/s00410-005-0007-x.
Aoki, K. and Shiba, I., 1973- Pyroxene from lherzolithe inclusions of Itinome-gata, Japan. Lithos 6, pp. 41-50. DOI: 10.1016/0024-4937(73)90078-9.
Aoki, K., 1964- Clinopyroxenes from alkaline rocks of Japan.American Mineralogist: Journal of Earth and Planetary Materials,49:1199–1223.
Aparicio, A., 2010- Relationship between Clinopyroxene Composition and the Formation Environment of Volcanic Host Rocks. The IUP Journal of Earth Sciences 4, No.3.
Aydin, F., Karsli, O. and Sadiklar, M, B., 2008- Compositional Variations, Zoning Types and Petrogenetic Implications of Low-pressure Clinopyroxenes in the Neogene Alkaline Volcanic Rocks of Northeastern Turkey, Turkish Journal of Earth Sciences 18, pp. 163–186. DOI:10.3906/yer-0802-2.
Batki, A., Pál-Molnár, E., Jankovics, M. É., Kerr, A. C., Kiss, B., Markl, G., Heincz, A. and Harangi, S., 2018- Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania. Lithos 300, pp. 51–71. DOI: 10.1016/j.lithos.2017.11.029.
Berger, J., Femenias, O., Mercier, J. C. C. and Demaiffe, D., 2005- Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker, Journal of Metamorphic Geology 23, pp. 795–812. DOI: 10.1111/j.1525-1314.2005.00610.x.
Bondi, M., Morten, L., Nimis, P. L. and Tranne, C. A., 2002- Megacrysts and mafic–ultramafic xenolith-bearing ignimbrites from Sirwa Volcano, Morocco: Phase petrology and thermobarometry. Mineralogy and Petrology 75, pp. 203–221. DOI: 10.1007/s007100200024.
Canil, D. and Fedortchouck, Y., 2000- Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. Journal of Geophysical Research: Solid Earth 105, pp. 26003–26016. DOI: 10.1029/2000JB900221.
Cawthorn, R. G., 1994- Formation of chlor- and fluor-apatite in layered intrusions. Mineralogical Magazine, 58: 299–306. DOI: 10.1180/minmag.1994.058.391.12.
Dachs, E. J. C., 2004- PET: petrological elementary tools for Mathematica: an update. Geosciences 30, pp. 173-182. DOI: 10.1007/s007100200024.
Dachs, E., 1998- PET: petrological elementary tools for mathematica. Computers and Geosciences 24, pp. 219-235. DOI: 10.1016/S0098-3004(97)00141-6.
Dal Negro, A., Molin, G. M., Salviulo, G., Secco, L., Cundari, A. and Piccirillo, E. M., 1989- Crystal chemistry of clinopyroxene and itspetrogenetic signifcance: A new approach. Atti dei Convegni Lincei, The lithosphere in Italy, pp.271-295.
Deer, W. A., Howie, R. A. and Zussman, J., 1992- An Introduction to the Rock forming minerals. 2nd edition, single chain silicates. Longman, London, 696 pp.
Dobosi, G. and Jenner, G. A.,1999- Petrologic implications oftrace element variation in clinopyroxene megacrysts from theNógrád volcanic province, North Hungary: a study by laser ablation microprobe-inductively coupled plasma-mass spectrometry. Lithos 46, pp. 731–749. DOI: 10.1016/S0024-4937(98)00093-0.
Driouch, Y., Béziat, D., Grégoire, M., Laguenini, F., Ben Abbou, M., Ntarmouchant, A., Roddaz, M., Dahire, M., Bennouna, A., Belkasmi, M., Brusset, S. and Debat, P., 2010- Clinopyroxene trace element compositions of cumulate mafic rocks and basalts from the Hercynian Moroccan Central Meseta: petrogenetic implications. Journal of African Earth Sciences, 56: 97–106. DOI: 10.1016/j.jafrearsci.2009.05.007.
Droop, G. T. R., 1987- A general equation for estimating Fe3+ concentrations. In ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineralogical Magazine 51, pp. 431- 435. DOI: 10.1180/minmag.1987.051.361.10.
Faramarzi, N. S., Amini, S., Schmitt, A. K., Hassanzadeh, J., Borg, G., McKeegan, K., Razavi, S. M. and Mortazavi, S. M., 2015- Geochronology and geochemistry of rhyolites from Hormuz Island southern Iran: A new record of Cadomian arc magmatism in the Hormuz Formation. Lithos 236, pp. 203-211. DOI: 10.1016/j.lithos.2015.08.017.
Fettes, D. J., Desmons, J. and Árkai, P., 2007- Metamorphic rocks: a classification and glossary of terms: recommendations ofthe International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks, Cambridge University Press, 244p.
Foley, S. F. and Venturelli, G., 1989- High K2O rocks with high MgO, High SiO2 affinities in: Crawford, A. J., (ED.) Boninites and Related Rocks,Uniwin Hyman London, pp. 72-88.
France, L., Ildefonse, B., Koepke, J. and Bech, F., 2010- A new method to estimate the oxidation state of basaltic series from microprobe analyses. Journal of Volcanology and Geothermal Research, 189: 340-346. DOI: 10.1016/j.jvolgeores.2009.11.023.
Gaetani, G. A. and Grove, T. L., 1993- Bryan WB The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365: 332–334. DOI: 10.1038/365332a0.
Gamble, R. P. and Taylor, L. A., 1980- Crystal/liquid partitioning augite: effects of cooling rate, Earth and Planetary Science Letters 47, 21-33. DOI: 10.1016/0012-821X(80)90100-4.
Ghasempour, M. R., Davoudian, A. R.,Shabanian, N., Moeinzadeh, H., 2018-Condition and nature of the fluid creating the hydrothermal alteration in themafic rocks of the Horjand region of Kerman, the 4th NationalGeology andMining ExplorationsSymposium, Institute of excellent Education of Kerman.
Ghasempour, M. R., Davoudian, A. R., Shabanian, N., Moeinzadeh, H. and Nakashima, K., 2019- Geochemistry and mineral chemistry of gabbroic rocks from Horjand of Kerman province, Southeast of Iran: Implications for rifting along the northeastern margin of Gondwana. Journal of Geodynamics, (Under review).
Gilman, T., Feineman, M. and Fisher, D., 2009- The Chulitna terrane of south-central Alaska: A rifted volcanic arc caught between the Wrangellia composite terrane and the Mesozoic margin of North America. Geological Society of America Bulletin 121, pp. 979–991. DOI: 10.1130/B26400.1.
Green, D. H. and Ringwood, A. E., 1968- The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters 3, pp. 151-160. DOI: 10.1016/0012-821X(67)90027-1.
Green, T. H.,1972- Crystallization of calc-alkalineandesite under controlled high pressure hydrouscondition, Contributions to Mineralogy andPetrology 34, pp. 367-385. DOI: 10.1007/BF00373770.
Guezal, J., Baghdadi, M. E. and Barakat, A., 2015- The Jurassic–Cretaceous volcanism of the Atlas of Beni-Mellal (Central High Atlas, Morocco): Evidence from clinopyroxene composition.Arabian Journal of Geosciences 8, pp. 977-986. DOI: 10.1007/s12517-013-1256-z.
Helz, R. T.,1973- Phase relationships of basalts intheir melting range at PH2O = 5 kb as a functionof oxygen fugacity, Part I. Mafic Phases, Journal of Petrology14, pp. 249-302. DOI: /10.1093/petrology/14.2.249.
Kargin, A. V., Sazonova, L. V., Nosova, A. A. and Tretyachenko, V. V., 2016- Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: Evidence for mantle metasomatism associated with kimberlite melts. Lithos 262, pp. 442–455. DOI: 10.1016/j.lithos.2016.07.015.
Kil, Y., Shin, H. S., Oh, H. Y., Kim, J. S., Choi, M. S., Shin, H. J., and Park, C. S., 2011- In-situ trace element analysis of clinopyroxene on thin section by using LA-ICP-MS. Geosciences Journal 15, pp.177-183. DOI: 10.1007/s12303-011-0012-1.
Kushiro, I., 1960- Si-Al relation in clinopyroxenes from igneous rock. American journal of science, 258: 548–554. DOI: 10.2475/ajs.258.8.548.
Lebas, N. J., 1962- the role of aluminous in igneous clinopyroxenes with relation to their parentage. American Journal of Science 260: 267-288. DOI: 10.2475/ajs.260.4.267.
Leterrier, J., Maury, R. C., Thonon, P., Girard, D. and Marchal, M., 1982- Clinopyroxene composition as a method of identification of the magmatic affinities of Paleo-volcanic series. Earth and Planetary Science Letters 59:139-154. DOI: 10.1016/0012-821X(82)90122-4.
Moretti, R., 2005- Polymerization, basicity, oxidation state and their role in ionic modelling of silicate melts. Annals of Geophysics 48: 583-608. DOI: 10.4401/ag-3221.
Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I. V., Ross, M., Seifert, F. A., Zussman, J., Akoi, K. I.and Gottardi, G., 1988- Nomenclature of pyroxenes. Mineralogical Magazine, 52: 535-55
Nisbet, E. G. and Pearce, J. A., 1977- Clinopyroxene composition of mafc lavas from different tectonic settings. Contributions to Mineralogy and Petrology 63, pp. 149-160.
Nosova, A. A., Sazonova, L. V., Narkisova, V. V. and Simakin, S. G., 2002- Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil Island arc in the Central Urals. Geochemistry International 40, pp. 219-232.
Ottonello, G., Moretti, R., Marini, L. andZuccolini, M. V., 2001- Oxidation state of ironin silicate glasses and melts: A thermochemicalmodel. Chemical Geology, 174: 157-179.DOI:10.1016/S0009-2541(00)00314-4
Pearce, J. A. and Norry, M. J., 1979- Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, pp. 3347. DOI: 10.1007/BF00375192.
Pirajno, F., 2009- Hydrothermal processes and mineral sistems. Springer, Berline.
Putirka, K., Johnson, M., Kinzler, R., Longhi, J. and Walker, D., 1996- Thermobarometry of mafc igneous rocks based on clinopyroxene-liquidequilibria, 0-30 kbar. Contributions to Mineralogy and Petrolgy, 123: 92–108. DOI: 10.1007/s004100050145.
Putrika, K. D., 2008- Thermometers and Barometers for Volcanic Systems, Reviews in Mineralogy and Geochemistry 69, pp. 61-120. DOI: 10.2138/rmg.2008.69.3.
Ramezani, J. and Tucker, R. D., 2003- The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science 303: 622-665. DOI: 10.2475/ajs.303.7.622.
Sa'ad–aldin, N., 2004- Systematic geochemical exploration in the sheet 1:100.000 of Horjand, Geological Survey of Iran, Tehran. (in Persian), 65P.
Saccani, E., Azimzadeh, Z., Dilek, Y. and Jahangiri, A., 2013- Geochronology and petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and implications for the melt evolution of Paleo-Tethyan rifting in Western Cimmeria. Lithos 162, pp. 264-278. DOI: 10.1016/j.lithos.2013.01.008
Sahandi, M. R., 1995- Geological map of Horjond 1:100.000, No. 7450, Geological Survey of Iran, Tehran.
Sánchez-García, T., Bellido, F., Pereira, M. F., Chichorro, M., Quesada, C., Pin, C. H. and Silva, J. B., 2010- Rift related volcanism predating the birth of the Rheic Ocean (Ossa-Morena Zone, SW Iberia). Gondwana Research, 17: 392-407. DOI: 10.1016/j.gr.2009.10.005
Schweitzer, E. L., Papike, J. J. and bence, A. E., 1979- Statitical analysis of clinopyroxenes from deep sea basalts. American Mineralogist, 64: 501-513. DOI: 10.1029/GL005i007p00573.
Shu, S. Y., Yang, X. Y., Liu, L., Liu, W., Cao, J. Y. and Gao, E. G., 2018- Dual Geochemical Characteristics for the BasicIntrusions in the Yangtze Block, South China: New Evidence for the Breakup of Rodinia. Minerals 8, p. 288. DOI: 10.3390/min8060228.
Simonetti, A., Shore, M. and Bell, K., 1996- Diopside phenocrysts from nephelinite lavas, Napak Volcano, Eastern Uganda Evidence for magma mixing. The Canadian Mineralogist 34, pp. 411–421.
Soesoo, A., 1997- A multivariate analysis ofclinopyroxene composition: empiricalcoordinates for the crystallization P-Testimations. Geological Society of Sweden,119: 55-60. DOI: 0.1080/11035899709546454.
Stocklin, J., 1968- Structural history and tectonics of Iran, a review. American Association of Petroleum Geologists Bulletin 52,7. PP. 1229-1258.
Sun, C. M. and Bertrand, J., 1991- Geochemistry of clinopyroxenes in plutonic and volcanic sequences from the Yanbian Proterozoic ophiolites (Sichuan Province, China): petrogenetic and geotectonic implications. Schweiz Mineralogische Petrologische Mitteilungen 71: 243 259.
Tang, D. M., Qin, K. Z., Chen, B., Ma, Y. J., Guo, H. and Evans, N. J., 2017- Mineral chemistry and genesis of the PermianCihai and Cinan magnetite deposits, Beishan, NW China. Ore Geology Reviews86, 79–99. DOI: 10.1016/j.oregeorev.2017.01.019
Tracy, R. J. and Robinson, P., 1977- Zoncd titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. American Mineralogist 62: 634-645.
Verhoogen, J., 1962- Distribution of titanium between silicates and oxides in igneous rocks. American Journal of Science,260:211–220. DOI: 10.2475/ajs.260.3.211
Vernon, R. H., 2004-A practical guide to rock microstructure, Cambridge university press, pp.594.DOI:10.2138/am.2005.449
Wass, S. Y., 1979- Multiple origins of clinopyroxene in alkalic basaltic rock. Lithos 12, pp.115-132. DOI: 10.1016/0024-4937(79)90043-4
Wones, R. D., 1989- Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74: 744-749.
Zhang, Y. U., Yu, K. and Qian, H., 2018- LA-ICP-MS Analysis of Clinopyroxenes in BasalticPyroclastic Rocks from the Xisha Islands,Northwestern South China Sea. minerals, 8,575. DOI: 10.3390/min8120575.
Zhang, Z. C., Xiao, X. C., Wang, J. and Luo, Z., 2005- Mineral Chemistry of the Pulu Cenozoic volcanic rocks in the west Kunlun Mountains and its constraints on the magmatic processes. Acta Mineral. Sin, 25: 237–248.
Zhu, Y. and Ogasawara, Y., 2004- Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan. Journal of Asian Earth Sciences, 22: 517-527.DOI: 10.1016/S1367-9120(03)00091-9