Document Type : Original Research Paper

Authors

1 Ph.D.Student, Department of Geology, Science and Research Branch, Islamic azad University, Tehran, Iran

2 Associate Professor, Research Institute for Earth Sciences, Tehran, Iran

3 Professor, Department of Geology, Science and Research branch, Islamic azad University, Tehran, Iran

4 Associate Professor, Department of Geology, Mashhad Branch, Islamic azad University, Mashahd, Iran

5 Ph. D., Geological Survey of Iran, Tehran, Iran

Abstract

The leucocratic granite emplaced as small masses and dykes in the Alvand batholith. The leucocratic granite consists of tourmaline alkali granite, biotite alkali granite, arfvedsonite alkali granite, rutil alkali granite, and biotite- muscovite granites with alkaline and peraluminous affinities. They show enrichments of LREEs relative to HREEs and LILE relative to HFSE with negative anomalies in Nb, Ta and Ti, in normalized trace element diagrams. The leucocratic granite of the Alvand batholith resemble A-type and can be further classified in two of A and A' types granite. The trace elements content of A-type is much higher than A'-type granite. Based on geochemical data, it seems that A- and A'-type granites were generated from partial melting of mantle source. As mantle magma ascends, fractionate and empalce into the crust, A-type leucocratic are formed with minimal contamination and A'-type leucocratic with significant contaminant with continent crust are formed.
Field and geochronology data suggest that the leucocratic granite were generated in the late Jurassic, which is contemporaneous with the subduction of the Neo-Tethys oceanic crust beneath the central Iran. It seems that the leucocratic granites were emplaced during a local extensional phase as dykes and small bodies in the Alvand batholith.

Keywords

Main Subjects

 
Alavi, M., 1994- tectonic of the zagros orogenic belt of Iran: new data and interpretion. tectonophysics, no.229,211-238. DOI: 10.1016/0040-1951(94)90030-2.
Aliani, F., Maanijou, M., Sabouri, Z., Sepahi, A.A., 2012, Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran, Geochemistry 72- 4, 363-383. DOI: 10.1016/j.chemer.2012.05.001
Anderson, J. L., 1983-  Proterozoic anorogenic granite plutonism of North America. Geological Society of American Memory 161, 133-154.
Baharifar, A. A., Moinevaziri, H., Bellon, H. and  Pique, A., 2004- The crystalline complexes of Hamadan (Sanandaj–Sirjan Zone, Western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic event. Comptes Rendus Geosciences 336, 1443–1452. DOI:10.1016/j.crte.2004.09.014.
 Bedard, J., 1990-  Enclaves from the A-type granite of the Megantic complex, White Mountain magma series: clues to granite mag-magenesis. Journal of Geophysical Research 95(B11), 17797-17819. DOI:10.1029/JB095iB11p17797 .
Berberian, F. and  Berberian, M., 1981- Tectonic–plutonic episodes in Iran. In: Gupta, H.K., Delany, F.M. (Eds.), Zagros indukush, Himalaya Geodynamic Evolution. American Geophysical Union, Washington, DC, pp. 5–32. DOI: 10.1029/GD003p0005
Berberian, M. and King, G, C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth science, 18, 210-265. DOI: 10.1139/e81-019.
Collins, W. J., Beams, S. D., White, A. J. R. and chappell, B.W., 1982- Nature and origin of A_type granite with particulsr refrence to south_ eastern Australia. contrib. mineral. p80:189_200. DOI: 10.1007/BF00374895
Collins, L.G. and Collins, B.J., 2013. Origin of myrmekite as it relates to K-, Na-, and Ca-metasomatism and the metasomatic origin of some granite masses where myrmekite occurs. Inyo Mountains, California, USA. Myrmekite electronic journal, ISSN 1526-5757, Nr. 44, in http://www.csun.edu/~vcgeo005/Nr56Papoose.pdf. DOI:
Creaser, R. A., Price, R. C. & Wormald, R. J., 1991-  A-type granite revisited: assessment of a residual-source modal. Geology 19, 163-166. DOI: 10.1130/0091-7613(1991)0192.3.CO;2
Eby, G.N., 1992- Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20, 641–644. DOI: 10.1130/0016-7606(1973)842.0.CO;2
Eby, N., 2006- Distinctions between A-type granites and petrogenetic pathways. In Dall’Agnol, R. et al. (eds.) 2006. Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton, Abstracts Volume and Field Trips Guide. Belém, PRONEX-UFPA/SBG-NO, p. 48. DOI: 10.1590/2317-4889201620160059 
Eby, G. N., 2011- A-type granites: magma sources and their contribution to the growth of the continental crust. Seventh Hutton Symposium on Granites and Related Rocks, p. 50-51. DOI: 10.1016/j.lithos.2012.08.003
Forst, C. D. & Forst, R. B., 1997-  Reduced rapakivi-type granites: the tholeiite connection. Geology 25, 647-650. DOI: 10.1130/0091-7613(1997)0252.3.CO;2
Goodman, R.J., 1972- The distribution of Ga and Rb in coexisting groundmass and phenocryst phase of some basic volcanic rocks. Geochimica et cosmochimica Acta, 36, 303–317. DOI: 10.1016/0016-7037(72)90025-7.
Ghalamghash J., Mirnejad, H., Hamideh Rashid, H., 2009.  Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj-sirjan zone, NW lran: A case study from the Alvand pluton, Stuttgart, Vol. 186/1, p. 79-93. DOI:  10.1127/0077-7757/2009/0133.
Hassanzadeh, J., and B. P. Wernicke ., 2016-  The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions, Tectonics, 35, 586–621. DOI: 10.1002/2015TC003926
King, P. L., Chappell, B. W., Allen, M. C., White, A. J. R., 2001-  Are A-type granites the high temperature felsic granites? Evidence from fractionated granites of the wangrash suite, Australian Journal of earth sciences 48, 501-5014. DOI: 10.1046/j.1440-0952.2001.00881.x
Mackenzie, W. S., Donaldson, C. H., Guilford, C., 1984- Atlas of igneous rocks and their textures. Longman publication.
Meschede, M., 1986- A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol., 56, 207−218. DOI: 10.1016/0009-2541(86)90004-5
Middlemost, E. A. K., 1994- Nming materials in the magma Igneous rock system. Earth sc Rev.,37:215-224. DOI: 10.1016/0012-8252(94)90029-9
Ramo, O. T. & Haapala, I., 1991-  The rapakivi granites of easthern Fennoseandia: a review withinsights into their origin in the light of new Sm-Nd isotopic data. In: Gower, C.F., River, T. and Ryan, B. (Eds), Mid-Proterozoic Laurentia-Baltica. Geological Association of Canada Special Paper 38, 401-415.
Rickwood, P. C., 1989- Boundary lines within petrologic diagrams Which use oxides of major and minor elements. Lithos, 22:247-263. DOI: 10.1016/0024-4937(89)90028-5.
Rollinson, H. R., 1993- Using geochemical data: evaluation, presentation, interpretation. 1st edition, Longman Scientific and Technichal, London. DOI: 10.1144/GSL.SP.2006.264.01.03.
Sepahi, A.A., 2008- Typology and petrogenesis of granitic rocks in the Sanandaj-Sirjan metamorphic belt, Iran: with emphasis on the Alvand plutonic complex. Neues Jahrb. Geol. P.-A. 247 (3), 295–312. DOI: 10.1127/0077-7749/2008/0247-0295
Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A. A., Shang, C. K., Vousoughi Abedini, M., 2010-  Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): New evidence for Jurassic magmatism. Journal of Asian Earth Sciences 39, 668–683. DOI: 10.1016/j.jseaes.2010.04.014
Shand, S.J., 1951, The study of rocks. London, Thomas, Murby and Co, 236 PP.
Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle Composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in Ocean Basins. Geological Society of   London, pp. 313–345 (Special Publication 42). DOI: 10.1144/GSL.SP.1989.042.01.19.
Tapper, J. H., Nelson, B. K., Bergantz, G. W. and Irving, A. J., 1993-  Petrology of the Chilliwack Batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology 113: 333–351. DOI: 10.1029/95JB03463.
Whalen, J. B., Currie, K. L., and Chappell, B. W., 1987-  A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407-419. DOI: 10.1007/BF00402202.
Whitney, D. L. and Evans, W. B., 2010-  Abbreviations for names of rock-forming minerals. American Mineralogist, Volume 95, pages 185–187. DOI: 10.2138/am.2010.3371.
Wright, J. B., 1969-  A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geol. Mag. Vol. 106, No. 4, pp.370-384. DOI:   10.1017/S0016756800058222.
Wu, F., Sun, D., Li, H., Jahn, B. and Wilde, S., 2002- A-type granites in northeastern China: age and geochemical constraints on their petroenesis. Chemical Geology, 187, 143-173. DOI: 10.1016/S0009-2541(02)00018-9