Document Type : Original Research Paper

Authors

1 Ph.D., Department of Geology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

2 Associate Professor, Department of Geology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

3 Associate Professor, Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

4 Assistant Professor, Department of Geology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

The peridotites from Marivan-Kamyaran ophiolite suite (MKO), outer Zagros ophiolite belt, western Iran, are studied for the petrological and geochemical characteristics. Both mantle and crustal peridotites are present in the Marivan-Kamyaran ophiolitic sequence. Extensive compositional variations in MgO, Al2O3, Cr, Ni and Al2O3 / SiO2, combined with the abyssal (MOR) and supra-subduction zone (SSZ) nature of the peridotites, are indicative of variant degrees of depletion of the mantle peridotites. Various degrees of depletion are consistent with a wide range of partial melting percentages (10-15%) obtained from non-modal backward partial melting models. The enrichment in HFSE such as Hf, Ti, Ta and Th indicates melt-rock interaction in the mantle peridotites; while, the enrichment in U and LIL elements such as Cs, Rb, Pb is most probably related to the fluid-rock interaction. It is suggested here that MOR nature of a part of the mantle peridotites in the region has been changed to SSZ characteristics in later stages through processes such as melt-rock interaction. It is likely that, similar to other occurrences of outer Zagros ophiolite belt, mantle peridotites from MKO with MOR and SSZ characteristics had been originated in MOR setting, before their composition were modified in a SSZ environment.

Keywords

Main Subjects

References
Aldanmaz, E., Schmidt, M. W., Gourgaud, A. and Meisel, T., 2009- Mid-ocean ridge and supra-subduction geochemical signatures in spinel-peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos, 113: 691-708. https://doi.org/10.1016/j.lithos.2009.03.010.
Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A. and Nutman, A. P., 2012- Recognition of Late Cretaceous Hasanbag ophiolite-arc rocks in the Kurdistan Region of the Iraqi Zagros suture zone: A missing link in the paleogeography of the closing Neotethys Ocean. Lithosphere, 4: 395-410. https://doi.org/10.1130/L207.1.
Allahyari, K., Saccani, E., Rahimzadeh, B. and Zeda, O., 2014- Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran. Journal of Asian Earth Sciences, 79: 312-328. https://doi.org/10.1016/j.jseaes.2013.10.005.
Aziz, N. R., Aswad, K. J. and Koyi, H. A., 2011- Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148: 819-837. https://doi.org/10.1017/S0016756811000409.
Azizi, H., Tanaka, T., Asahara, Y., Chung, S. L. and Zarrinkoub, M. H., 2011- Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U-Pb age and Sr-Nd isotopes. Journal of Geodynamics, 52: 304-320. https://doi.org/10.1016/j.jog.2011.03.001.
Bodinier, J. L. and Godard, M., 2014- Orogenic, Ophiolitic, and Abyssal Peridotites. In: Treatise on geochemistry (Eds. Turekian, K. K. and Holland, H. D.) 3.4: 103-167. Elsevier Science, Amsterdam. https://doi.org/10.1016/B978-0-08-095975-7.00204-7.
Chen, Z. Q., Zhou, H. Y., Liu, Y., Yang, Q. H., Li, J. W. and Dick, H. J., 2013- Influence of igneous processes and serpentinization on geochemistry of the Logatchev Massif harzburgites (14o45′ N, Mid-Atlantic Ridge), and comparison with global abyssal peridotites. International Geology Review, 55: 115-130. https://doi.org/10.1080/00206814.2012.704674.
Choi, S. H., Shervais, J. W. and Mukasa, S. B., 2008- Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology, 156: 551-576. https://doi.org/10.1007/s00410-008-0300-6.
Coleman, R. G., 1977- Ophiolites: ancient oceanic lithosphere? 1st edition, Springer,Verlag, Berlin, 229p.
Dai, J., Wang, C., Polat, A., Santosh, M., Li, Y. and Ge, Y., 2013- Rapid forearc spreading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172: 1-16. https://doi.org/10.1016/j.lithos.2013.03.011.
Delacour, A., Früh-Green, G. L., Frank, M., Gutjahr, M. and Kelley, D. S., 2008- Sr-and Nd-isotope geochemistry of the Atlantis Massif (30oN, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chemical Geology, 254: 19-35. https://doi.org/10.1016/j.chemgeo.2008.05.018.
Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M. and Hattori, K., 2010- In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269: 262-277. https://doi.org/10.1016/j.chemgeo.2009.10.002.
Dick, H. J., Fisher, R. L. and Bryan, W. B., 1984- Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth and Planetary Science Letters, 69: 88-106. https://doi.org/10.1016/0012-821X(84)90076-1.
Dilek, Y. and Furnes, H., 2014- Ophiolites and their origins. Elements, 10: 93-100. https://doi.org/10.2113/gselements.10.2.93.
Dilek, Y., Furnes, H. and Shallo, M., 2007- Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research, 11: 453-475. https://doi.org/10.1016/j.gr.2007.01.005.
Dunn, T. and Stringer, P., 1990- Petrology and petrogenesis of the Ministers Island dike, southwest New Brunswick, Canada. Contributions to Mineralogy and Petrology, 105: 55-65. https://doi.org/10.1007/BF00320966.
Escuder-Viruete, J., Castillo-Carrión, M. and Pérez-Estaún, A., 2014- Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc. Lithos, 196: 261-280. https://doi.org/10.1016/j.lithos.2014.03.013.
Frey, F. A., 1984- Rare earth element abundances in upper mantle rocks. In: Developments in geochemistry (Ed. Henderson, P.) 2: 153-203. Elsevier, Amsterdam.
Green, T. H., Blundy, J. D., Adam, J. and Yaxley, G. M., 2000- SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200 oC. Lithos, 53: 165-187. https://doi.org/10.1016/S0024-4937(00)00023-2.
Hart, S. R. and Zindler, A., 1986- In search of a bulk-Earth composition. Chemical Geology, 57: 247-267. https://doi.org/10.1016/0009-2541(86)90053-7.
Irvine, T. N. and Findlay, T. C., 1972- Alpine-type peridotite with particular reference to the Bay of Islands igneous complex. Publication of Earth Physics Branch, Department of Energy, Mines and Research, Canada, 42: 27-128.
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. and Wänke, H., 1979- The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. In Lunar and Planetary Science Conference Proceedings, 10: 2031-2050. http://adsabs.harvard.edu/full/1979LPSC...10.2031J.
Jeffrey, P. G., 1975- Chemical Methods of Rock Analysis. 2nd edition, Pergamon Press, Oxford, England, 525p.
Jenner, G. A., 1996- Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry. In: Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration (Eds. Wyman D. A.) Geol Assoc Can, Short Course Notes Vol. 12. Winnipeg, Manitoba, Canada: pp. 51-77.
Johnson, K. T. and Dick, H. J., 1992- Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. Journal of Geophysical Research: Solid Earth, 97: 9219-9241. https://doi.org/10.1029/92JB00701.
Johnson, K. T., Dick, H. J. and Shimizu, N., 1990- Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth, 95: 2661-2678. https://doi.org/10.1029/JB095iB03p02661.
Kapsiotis, A. N., 2014- Compositional signatures of SSZ-type peridotites from the northern Vourinos ultra-depleted upper mantle suite, NW Greece. Chemie der Erde-Geochemistry, 74: 783-801. https://doi.org/10.1016/j.chemer.2014.05.004.
Kelemen, P. B., Kikawa, E., Miller, D. J. and Party, S. S., 2007- Leg 209 summary: Processes in a 20‐km‐thick conductive boundary layer beneath the Mid‐Atlantic Ridge, 14o-16oN. In: Proceedings of the Ocean Drilling Program (Eds. Kelemen, P. B., Kikawa, E., and Miller, D. J.) 209: 1-33. Scientific Results, Texas. doi:10.2973/odp.proc.sr.209.001.2007.
Khedr, M. Z., Arai, S., Python, M. and Tamura, A., 2014- Chemical variations of abyssal peridotites in the central Oman ophiolite: evidence of oceanic mantle heterogeneity. Gondwana Research, 25: 1242-1262. https://doi.org/10.1016/j.gr.2013.05.010.
Kinzler, R. J., 1997- Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid‐ocean ridge basalt petrogenesis. Journal of Geophysical Research: Solid Earth, 102: 853-874. https://doi.org/10.1029/96JB00988.
Kodolányi, J., Pettke, T., Spandler, C., Kamber, B. S. and Gméling, K., 2011- Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology, 53: 235-270. https://doi.org/10.1093/petrology/egr058.
Liang, Y. and Elthon, D., 1990- Evidence from chromium abundances in mantle rocks for extraction of picrite and komatiite melts. Nature 343: 551-553. https://doi.org/10.1038/343551a0.
Malvoisin, B., 2015- Mass transfer in the oceanic lithosphere: serpentinization is not isochemical. Earth and Planetary Science Letters, 430: 75-85. https://doi.org/10.1016/j.epsl.2015.07.043.
Marchesi, C., Garrido, C. J., Bosch, D., Bodinier, J. L., Hidas, K., Padron-Navarta, J. A. and Gervilla, F., 2012- A Late Oligocene suprasubduction setting in the westernmost Mediterranean revealed by intrusive pyroxenite dikes in the Ronda peridotite (southern Spain). The Journal of Geology, 120: 237-247. https://doi.org/10.1086/663875.
McDonough, W. F. and Sun, S. S., 1995- The composition of the Earth. Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4.
Michael, P. J. and Bonatti, E., 1985- Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 73: 91-104. https://doi.org/10.1016/0012-821X(85)90037-8.
Mohammad, Y. O., 2013- P-T evolution of meta-peridotite in the Penjwin ophiolite, northeastern Iraq. Arabian Journal of Geosciences, 6: 505-518. https://doi.org/10.1007/s12517-011-0372-x.
Monsef, I., Monsef, R., Mata, J., Zhang, Z., Pirouz, M., Rezaeian, M., Esmaeili, R. and Xiao, W., 2018- Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: Constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran). Gondwana Research, 62: 287-305. https://doi.org/10.1016/j.gr.2018.03.002.
Moradpour, A., Sahamieh, R. Z., Khalaji, A. A. and Sarikhani, R., 2017- Textural records and geochemistry of the Kermanshah mantle peridotites (Iran): implications for the tectonic evolution of southern Neo-Tethys. Journal of Geosciences, 62: 165-186. http://dx.doi.org/10.3190/jgeosci.244.
Nicolas, A., 1989- Structural Studies of Ophiolites and Dynamics of Ocean Lithosphere. 1st edition, Kluwer Academic, Boston, 370p.
Niu, Y., 1997- Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. Journal of Petrology, 38: 1047-1074. https://doi.org/10.1093/petroj/38.8.1047.
Niu, Y., 2004- Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45: 2423-2458. https://doi.org/10.1093/petrology/egh068.
Nouri, F., Asahara, Y., Azizi, H. and Tsuboi, M., 2019- Petrogenesis of the Harsin-Sahneh serpentinized peridotites along the Zagros suture zone, western Iran: new evidence for mantle metasomatism due to oceanic slab flux. Geological Magazine, 156: 772-800. https://doi.org/10.1017/S0016756818000201.
Palme, H. and O'Neill, H. S. C., 2004- Cosmochemical estimates of mantle composition. In: Treatise on geochemistry, (Eds. Holland, H. D. and Turrekian, K. K.) 2.1: 1-38. Elsevier Science, Amsterdam. https://doi.org/10.1016/B0-08-043751-6/02177-0.
Parkinson, I. J. and Pearce, J. A., 1998- Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39: 1577-1618. https://doi.org/10.1093/petroj/39.9.1577.
Paulick, H., Bach, W., Godard, M., De Hoog, J. C. M., Suhr, G. and Harvey, J., 2006- Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15o 20′ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234: 179-210. https://doi.org/10.1016/j.chemgeo.2006.04.011.
Pearce, J. A., 2014- Immobile element fingerprinting of ophiolites. Elements, 10: 101-108. https://doi.org/10.2113/gselements.10.2.101.
Pearce, J. A. and Robinson, P. T., 2010- The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research, 18: 60-81. https://doi.org/10.1016/j.gr.2009.12.003.
Rampone, E., Romairone, A. and Hofmann, A. W., 2004- Contrasting bulk and mineral chemistry in depleted mantle peridotites: evidence for reactive porous flow. Earth and Planetary Science Letters, 218: 491-506. https://doi.org/10.1016/S0012-821X(03)00679-4.
Roberts, S. and Neary, C., 1993- Petrogenesis of ophiolitic chromitite. Geological Society, London, Special Publications, 76: 257-272. https://doi.org/10.1144/GSL.SP.1993.076.01.12.
Sabzehei, M., Gourabjiri, A. and Eslamdoust, F., 2010- Geological Map of Paweh and West Paweh 1/100.000, Geological survey of Iran, Tehran.
Saccani, E., Allahyari, K., Beccaluva, L. and Bianchini, G., 2013- Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research, 24: 392-411. https://doi.org/10.1016/j.gr.2012.10.009.
Saccani, E., Allahyari, K. and Rahimzadeh, B., 2014- Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan region, Iran): Evidence for interaction between MORB-type asthenosphere and OIB-type components in the southern Neo-Tethys Ocean. Tectonophysics, 621: 132-147. https://doi.org/10.1016/j.tecto.2014.02.011.
Salters, V. J. and Stracke, A., 2004- Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5: Q05B07. https://doi.org/10.1029/2003GC000597.
Shafaii-Moghadam, H., Mosaddegh, H. and Santosh, M., 2013- Geochemistry and petrogenesis of the Late Cretaceous Haji‐Abad ophiolite (Outer Zagros Ophiolite Belt, Iran): implications for geodynamics of the Bitlis-Zagros suture zone. Geological Journal, 48: 579-602. https://doi.org/10.1002/gj.2458.
Shafaii-Moghadam, H. and Stern, R. J., 2011- Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geological Magazine, 148: 762-801. https://doi.org/10.1017/S0016756811000410.
Shafaii-Moghadam, H. and Stern, R. J., 2015- Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites. Journal of Asian Earth Sciences, 100: 31-59. https://doi.org/10.1016/j.jseaes.2014.12.016.
Shafaii-Moghadam, H., Zaki Khedr, M., Chiaradia, M., Stern, R.J., Bakhshizad, F., Arai, S., Ottley, C.J. and Tamura, A., 2014- Supra-subduction zone magmatism of the Neyriz ophiolite, Iran: constraints from geochemistry and Sr-Nd-Pb isotopes. International Geology Review, 56: 1395-1412. https://doi.org/10.1080/00206814.2014.942391.
Suhr, G., 1999- Melt migration under oceanic ridges: inferences from reactive transport modelling of upper mantle hosted dunites. Journal of Petrology, 40: 575-599. https://doi.org/10.1093/petroj/40.4.575.
Uysal, I., Ersoy, E. Y., Dilek, Y., Kapsiotis, A. and Sarıfakıoğlu, E., 2016- Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos, 246: 228-245. https://doi.org/10.1016/j.lithos.2016.01.004.
Uysal, İ., Ersoy, E. Y., Karslı, O., Dilek, Y., Sadıklar, M. B., Ottley, C. J., Tiepolo, M. and Meisel, T., 2012- Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope systematics. Lithos, 132: 50-69. https://doi.org/10.1016/j.lithos.2011.11.009.
Uysal, İ., Şen, A. D., Ersoy, E. Y., Dilek, Y., Saka, S., Zaccarini, F., Escayola, M. and Karsli, O., 2014- Geochemical make-up of oceanic peridotites from NW Turkey and the multi-stage melting history of the Tethyan upper mantle. Mineralogy and Petrology, 108: 49-69. https://doi.org/10.1007/s00710-013-0277-3.
Whattam, S. A., Cho, M. and Smith, I. E., 2011- Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: geochemical evidence for supra-subduction zone formation and extensive melt-rock interaction. Lithos, 127: 599-618. https://doi.org/10.1016/j.lithos.2011.06.013.
White, W. M., 2013- Geochemistry. 1st edition John Wiley and Sons, New Jersey, United States, 672p.
Workman, R. K. and Hart, S. R., 2005- Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231: 53-72. https://doi.org/10.1016/j.epsl.2004.12.005.
You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H. and Spivack, A. J., 1996- Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140: 41-52. https://doi.org/10.1016/0012-821X(96)00049-0.