Document Type : Original Research Paper

Authors

1 Ms. C., School of Geology, College of Science, University of Tehran, Tehran, Iran

2 Professor, School of Geology, College of Science, University of Tehran, Tehran, Iran

3 Professor, Australian School of Mines, Minerals, Energy and Chemical Engineering, Curtin University, Australia

4 Ph. D. Student, Geochemistry research group, Faculty of Geoscience, Research Institute of Petroleum Industry, Tehran, Iran

Abstract

Geochemical investigation of Kazhdumi and Pabdeh formations suggest a shaly and carbonate lithology as well as a suboxic-anoxic marine depositional environment for both formations. On the other hand, the thermal maturity of the Kazhdumi Formation is equivalent to the mid of oil window while thermal maturity-related parameters show that the Pabdeh Formation has not entered the oil window. Biomarkers are indicative of derivation of the four oil samples from a carbonate-shaly or marly source rock. Also, thermal maturity-related biomarkers reflect a peak mature stage for all of the four samples. Different values of oleanane index in oil samples is implying a more significant role of the Pabdeh Formation in hydrocarbon embedded in 36, 56, 55 wells in compare to well number 22. In general, oil-source correlation introduces both Kazhdumi and Pabdeh formations as source rocks for the crude oils.

Keywords

Main Subjects

References                                                                                                                                              
Al-Husseini, M. I., 2007- Iran’s crude oil reserves and production. GeoArabia 12, 69–94.               
Alizadeh, B., Maroufi, K.  and Fajrak, M., 2018- Hydrocarbon reserves of Gachsaran oilfield, SW Iran: Geochemical characteristics and origin. Mar. Pet. Geol. 92, 308–318. https://doi.org/10.1016/j.marpetgeo.2017.08.040.
Alizadeh, B., Sarafdokht, H., Rajabi, M., Opera, A. and Janbaz, M., 2012- Organic geochemistry and petrography of Kazhdumi (Albian–Cenomanian) and Pabdeh (Paleogene) potential source rocks in southern part of the Dezful Embayment, Iran. Org. Geochem. 49, 36–46. https://doi.org/10.1016/j.orggeochem.2012.05.004.
Bordenave, M., 2002- The Middle Cretaceous to Early Miocene petroleum system in the Zagros domain of Iran, and its prospect evaluation. AAPG Annu. Meet. Am. Assoc. Pet. Geol. Houst. 6, 1–9. https://doi.org/ 10.1306/61EEE1A6-173E-11D7-8645000102C1865D.
Bordenave, M. and Hegre, J., 2005- The influence of tectonics on the entrapment of oil in the Dezful embayment, Zagros foldbelt, Iran. J. Pet. Geol. 24, 339–368. https://doi.org/10.1111/j.1747 5457.2005.tb00087.
Bordenave, M. L. and Burwood, R., 1990- Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Bangestan reservoir oil accumulations. Org. Geochem. 16, 369–387. https://doi.org/10.1016/0146-6380(90)90055-5.
Bordenave,  M. L. and Huc, A.Y., 1995- The Cretaceous source rocks in the Zagros foothills of Iran. Rev. L’institut Français du Pet. 50, 727–752. https://doi.org/10.2516/ogst:1995044.
Bray, E. E. and Evans, E. D., 1961- Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15. https://doi.org/10.1016/0016-7037(61)90069-2.
Burwood, R., Leplat, P., Mycke, B. and Paulet, J., 1992- Rifted margin source rock deposition: a carbon isotope and biomarker study of a west African Lower Cretaceous “lacustrine” section. Org. Geochem. 19(1-3), 41–52. https://doi.org/10.1016/0146-6380(92)90026-T.
Connan, J. and Cassou, A. M., 1980- Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Acta 44, 1–23. https://doi.org/10.1016/0016-7037(80)90173-8.
Dembicki, H., 2016- Practical petroleum geochemistry for exploration and production. Elsevier.
Ghazban, F., 2007- Petroleum Geology Of the Persion Gulf. Tehran university, Tehran.
Hakimi, M. H., Al-Matary, A. M. and Ahmed, A., 2017- Bulk geochemical characteristics and carbon isotope composition of oils from the Sayhut sub-basin in the Gulf of Aden with emphasis on organic matter input, age and maturity. Egypt. J. Pet. https://doi.org/10.1016/j.ejpe.2017.06.002.
Hanson, A. D., Zhang, S. C., Moldowan, J. M., Liang, D. G. and Zhang, B. M., 2000- Molecular organic geochemistry of the Tarim Basin, northwest China. Am. Assoc. Pet. Geol. Bull. 84, 1109–1128. https://doi.org/10.1306/A9673C52-1738-11D7-8645000102C1865D.
Hosseiny, E., Rabbani, A. R. and Moallemi, S. A., 2016- Source rock characterization of the Cretaceous Sarvak Formation in the eastern part of the Iranian sector of Persian Gulf. Org. Geochem. 99, 53–66. https://doi.org/10.1016/j.orggeochem.2016.06.005.
Huang, W. Y. and Meinschein, W.G., 1979- Sterols as ecological indicators. Geochim. Cosmochim. Acta 43, 739–745. https://doi.org/10.1016/0016-7037(79)90257-6.
Hughes, W. B., Holba, A. G. and Dzou, L. I. P., 1995- The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 59, 3581–3598. https://doi.org/10.1016/0016-7037(95)00225-O.
Hunt, J. M., 1996- Petroleum geochemistry and geology. WH Freeman New York.
Kamali, M., Fathi Mobarakabad, A. and Mohsenian, E., 2006- Petroleum geochemistry and thermal modeling of Pabdeh Formation in Dezful Embayment. JUST 32(2), 1-11.
Li, D., Li, R., Wang, B., Liu, Z., Wu, X., Liu, F., Zhao, B., Cheng, J. and Kang, W., 2016- Study on oil–source correlation by analyzing organic geochemistry characteristics: a case study of the Upper Triassic Yanchang Formation in the south of Ordos Basin, China. Acta Geochim. 35(4), 408–420. https://doi.org/10.1007/s11631-016-0123-5.
Moldowan, J. M., Fago, F. J., Lee, C. Y., Jacobson, S. R., Watt, D. S., Slougui, N. E., Jeganathan, A. and Young, D. C., 1990- Sedimentary 12-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science (80-. ). 247, 309–312. https://doi.org/10.1126/science.247.4940.309.
Moldowan, J. M., Seifert, W. K. and Gallegos, E. J., 1985- Relationship between petroleum composition and depositional environment of petroleum source rocks. Am. Assoc. Pet. Geol. Bull. 69, 1255–1268.
Opera, A., Alizadeh, B., Sarafdokht, H., Janbaz, M., Fouladvand, R. and Heidarifard, M. H., 2013- Burial history reconstruction and thermal maturity modeling for the middle cretaceous–early miocene petroleum System, southern Dezful Embayment, SW Iran. Int. J. Coal Geol. 120, 1–14. https://doi.org/10.1016/j.coal.2013.08.008.
Peters, K. E. and Moldowan, J. M., 1993- The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments.
Peters, K. E., Walters, C. C. and Moldowan, J., 2005- The Biomarker Guide: Biomarkers and isotopes in petroleum systems and Earth historye, Vol 2.
Philp, R. P., 1985- Biological markers in fossil fuel production. Mass Spectrom. Rev. 4, 1–54. https://doi.org/10.1002/mas.1280040102.
Radke, M. and Welte, D., 1983- The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. Adv. Org. geochemistry 504–512.
Seifert, W. K. and Moldowan, J. M., 1979- The effect of biodegradation on steranes and terpanes in crude oils. Geochim. Cosmochim. Acta 43, 111–126. https://doi.org/10.1016/0016-7037(79)90051-6.
Seifert, W. K. and Moldowan, J., 1980- The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Phys. Chem. Earth 12, 229–237. https://doi.org/10.1016/0079-1946(79)90107-1.
Sepehr, M. and Cosgrove, J. W., 2004- Structural framework of the Zagros fold–thrust belt, Iran. Mar. Pet. Geol. 21, 829–843. https://doi.org/10.1016/j.marpetgeo.2003.07.006.
Sfidari, E., Zamanzadeh, S. M., Dashti, A., Opera, A. and Tavakkol, M. H., 2016- Comprehensive source rock evaluation of the Kazhdumi Formation, in the Iranian Zagros Foldbelt and adjacent offshore. Mar. Pet. Geol. 71, 26–40. https://doi.org/10.1016/j.marpetgeo.2015.12.011.
Shanmugam, G., 1985- Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. Am. Assoc. Pet. Geol. Bull. 69, 1241–1254. https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D.
Song, J., Littke, R., Weniger, P., Ostertag-Henning, C. and Nelskamp, S., 2015- Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe. Int. J. Coal Geol. 150, 127–153. https://doi.org/10.1016/j.coal.2015.08.011.
Ten Haven, H. L., De Leeuw, J. W., Damsté, J. S. S., Schenck, P. A., Palmer, S. E. and Zumberge, J. E., 1988- Application of biological markers in the recognition of palaeohypersaline environments. Geological Society, London, Special Publications, 40 (1), 123–130. https://doi.org/10.1144/GSL.SP.1988.040.01.11.
Tissot, B. P. and Welte, D. H., 1984- Petroleum Formation and Occurrence, springer.
Waples, D. W. and Machihara, T., 1991- Biomarkers for geologists–a practical guide to the application of steranes and triterpanes. In: Petroleum Geology, American Association of Petroleum Geologists Methods in Exploration, 9, 5-10.