نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، پژوهشکده علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران

2 استادیار، پژوهشکده علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران

3 دانشیار، دانشگاه لورین، نانسی، فرانسه

4 دانشیار، گروه زمین شناسی، دانشگاه پیام نور، ایران

5 کارشناسی ارشد، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ایران

6 دکترا، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ایران

چکیده

کانسار قشلاق‌میل بر روی کمربند ماگمایی ارومیه- دختر واقع شده است. کانی‌سازی رگه‌ای در داخل سنگ‌های میزبان متاتوف ریوداسیتی و ریولیتی ائوسن تشکیل شده است. زون‌های دگرسانی سریسیتی، سیلیسی، آرژیلیک و اکسیدهای آهن‌دار در محدوده مورد طالعه مشاهده می‌شوند. کانه‌های اولیه سولفیدی پیریت، کالکوپیریت ریزدانه و اکسیدی اسپکیولاریت و کانی‌های ثانویه گوتیت، لیمونیت، مالاکیت و کوارتز در بررسی‌های میکروسکوپی و صحرایی شناسایی شده‌اند. در مطالعات کانی‌شناسی (XRD) کانی‌های کلریت، ایلیت، کائولینیت، هماتیت، کوارتز، گروه میکا و کلسیت در رگه‌های طلا شناسایی شدند. با توجه به مطالعات لیتوژئوشیمایی، عنصر طلا با عناصر آهن، مولیبدن، نیکل و سرب دارای همبستگی مثبت است. مطالعات میانبارهای سیال(157 میانبار) در مناطق کانه‌دار قشلاق‌میل، دمای کانی‌سازی را 99 تا 299 درجه سانتی‌گراد و میزان شوری کانسار را 81/1 تا 30/12 درصد معادل وزنی نمک طعام نشان داده است. با استفاده از مطالعات لیزر رامان (13 نقطه)، حضور فازهای گازی (CO2, N2, H2O) در میانبار سیال ثابت گردید. با توجه به مطالعات صورت گرفته در این ناحیه، کانه‌زایی قشلاق‌میل را می‌توان احتمالا نوعی کانی‌زایی رگه‌ای- گرمابی طلا – مس دانست.  
 

کلیدواژه‌ها

موضوعات

کتابنگاری
آریا معدن‌کاو جم، 1391- نقشه 1:1000 قشلاق‌میل، گزارش داخلی شرکت آریا معدن‌کاو جم.
تقدسی، ح.، 1396- زمین‌شناسی، دگرسانی، کانی‌سازی،  ژئوشیمی و مطالعات سیالات درگیر در منطقه اکتشافی نامق، شمال شرقی کاشمر، پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، 103 ص.
تقدسی، ح. و ملک‌زاده شفارودی، آ.، 1397-  کانی‌شناسی، دگرسانی،  زمین‌شیمی و بررسی سیال‌های درگیر کانی‌سازی اکسید آهن- مس منطقه نامق، شمال شرق کاشمر، مجله بلورشناسی و کانی‌شناسی ایران، سال بیست و ششم، شماره سوم، ص. 541-554.
دهقان‌پور فراشاه، م. ص.، 1393-  بررسی و پتانسیل‌یابی کانی‌سازی طلای اپی‌ترمال و مس پورفیری حدفاصل منطقه چاه‌زرد- دره زرشک، جنوب یزد در محیط GIS، کارشناسی ارشد، دانشگاه صنعتی اصفهان، 62 ص.
سهیل، ف.، باقری، ه.، مهموری، ر.، 1398- دگرسانی، زمین‌شیمی، کانه‌زایی و مطالعه میانبارهای سیال در منطقه مس- طلا شجاع آباد، جنوب شرق نطنز، مجله پژوهش‌های دانش زمین، ص. 179- 201.
علائی مهابادی، س.، خلعت‌بری جعفری، م.، 1377-  نقشه زمین‌شناسی 1:100000 نویران، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
قائد امینی هارونی، م.، 1392-  ژئوشیمی و مدل زایشی اندیس مس علیشار در استان مرکزی، پایان‌نامه کارشناسی ارشد، دانشگاه اصفهان، 101 ص.
قائد امینی هارونی، م.، 1394-  تعیین شرایط تشکیل اندیس مس علیشار (استان مرکزی) با استفاده از داده‌های کانه‌نگاری و سیالات درگیر، مجله پترولوژی، دوره 6، شماره 21،  ص. 1-18.
کریم‌پور، م. ح.، 1382- کانی‌شناسی، دگرسانی،  سنگ منشأ و محیط تکتونیکی کانسارهای Iron Oxide Cu-Au و مثال‌هایی از ایران، فشرده مقالات یازدهمین همایش بلورشناسی و کانی‌شناسی ایران، یزد، ص. 184-189.
کریم‌پور، م. ح.، 1384-  مقایسه کانسار Cu-Ag-Au قلعه‌زری با دیگر کانسارهای نوع IOCG و ارائه رده بندی جدید، مجله بلورشناسی و کانی‌شناسی ایران، شماره 1، ص. 167-184.
گوهری، ح.، رسولی جمادی، ف.، مهرپرتو، م.، 1393- بررسی داده‌های ژئوشیمیایی عناصر نادر در توده نفوذی لوئین (شمال باختر ساوه) با نگرشی بر کانه‌زایی مس، همایش انجمن زمین‌شناسی اقتصادی ایران.
نظیری، م. ا.، مقدسی، س. ج.، یزدی، م.، محبعلی، ا. ر.، 1390- اکتشافات لیتوژئوشیمیایی طلا و عناصر همراه آنومالی 3 کانسار کوه دم، شمال شرق اردستان، اصفهان، دومین همایش ملی انجمن زمین‌شناسی اقتصادی ایران.
 
References
Alavi, M., 1994- Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211-238. https://doi.org/10.1016/0040-1951(94)90030-2.
Alizadeh Sevari, B., and Hezarkhani, A., 2014- Hydrothermal evolution of Darrehzar porphyry copper deposit, Iran: evidence from fluid inclusions, Arabian Journal of Geosciences, 7, 1463-1477. https://doi.org/10.1007/s12517-012-0744-x.
Asadi, H. H., Kianpouryan, S., Lu, Y. J., and McCuaig, T. C., 2014- Exploratory data analysis and C-A fractal model Applied in mapping multi-element soil anomalies for drilling: A case study from Sari Gunay epithermal gold deposit, NW Iran, Journal of Geochemical Exploration, 145, 233–241. https://doi.org/10.1016/j. gexplo .2014.07.005. 
Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., and Lu, Y. J., 2015- Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran, Ore Geology Reviews, 71, 819–838. https://doi.org/10.1016/j.oregeorev.2014.12.001.
Bodnar, R. J., 1983- A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V- T-X properties of inclusion fluid, Economic Geology, 78, 535-542. https://doi.org/10.2113/gsecongeo.78.3.535
Berberian, M., and King, G. C. P., 1981- Towards a paleo-geography and tectonic evolution of Iran, Reply. Canadian Journal of Earth Sciences, 18(11), 1764- 1766. https://doi.org/ 10.1139/e81-163.   
Carvalho, ER., 2009- Caracterização geologica e gênese das mineralizações de oxido de Fe-Cu-Au e metaisassociados na Provincia Mineral de Carajas: estudo de caso do deposito Sossego, PhD thesis, Universidade Estadual de Campinas,158 pp.
Caumon, M. C., Dubessy, J., Robert, P., and Tarantola, A., 2013- Fused-silica capillary capsules (FSCCs) as reference synthetic aqueous fluid inclusions to determine chlorinity by Raman spectroscopy. European Journal of Mineralogy, 25(5), 755-763. https://dx.doi.org/10.1127/0935-1221/2013/0025-2280.
Coveney, Jr., R. M., and Kelly, W. C., 1971- Dawsonite as a daughter mineral in hydrothermal fluid inclusions Contributions to Mineralogy and Petrology, 32(4), 334-342. http://dx.doi.org/10.1007/BF00373350.
Derakhshani, R., and Abdolzadeh, M., 2009- Geochemistry, mineralization and alteration zones of Darrehzar porphyry copper deposit, Kerman, IranJournal of Applied Sciences,9(9), 1628-1646. http://dx.doi.org/10.3923/jas.2009.1628.1646.
Fu, B., Williams, P.J., Oliver, N.H., Dong, G., Pollard, P.J., and Mark, G., 2003- Fluid mixing versus unmixing as an ore- forming process in the Cloncurry Fe-oxide-Cu-Au District, NW Queensland, Australia: evidence from fluid inclusions, Journal of Geochemical Exploration, 78, 617-622.https://doi.org/10.1016/S0375-6742(03)00117-1.
Geranian, H., Tabatabaei, S. H., Asadi, H., and Carranza, E. J., 2016- Application of discriminant analysis and Support  Vector machine in mapping gold potential areas for further drilling in the Sari-Gunay Gold Deposit, NW Iran,  Natural Resources Research, 25(2), 145-159.‏ https://doi.org/ 10.1007/s11053-015-9271-2.
Hall, D.L., Sterner, M., and Bodnar, R.J., 1988- Freezing point depression of NaCL-KCL-H2O solutions, Economic Geology, 83(1), 197-202. https://doi.org/10.2113/gsecongeo.83.1.197.
Heidari, S. M., Daliran, F., Paquette, J. L., and Gasquet, D., 2015a- Geology, timing, and genesis of the high sulfidation Au (–Cu) deposit of Touzlar, NW Iran, Ore Geology Reviews, 65, 460-486. doi.org/10.1016/j.oregeorev.2014.05.013.
Heidari, S.M., Ghaderi, M., and Afzal, P., 2013- Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au–Ag (Cu) deposit, NW Iran, Applied Geochemistry, 31, 119-132. doi.org/10.1016/j.apgeochem.2012.12.014.
Heidari, S.M., Ghaderi, M., Kouhestani, H., and Hosseini, M., 2015b- Touzlar epithermal Au-Ag (Cu) Deposit, Subvolcanic  Intrusion-related of itera-arc extensional setting, northwest Mahneshan, Iran, Geosciences, 24, 329-348.
Hitzman, M.W., and Porter, T. M., 2000- Iron oxide-Cu-Au deposits: what, where, when, and why. Hydrothermal iron oxide  copper-gold and related deposits: A global perspective, 1, 9-25.‏
Hitzman, W. M, Oreskes, N., and Einaudi, M. T., 1992- Geological characteristics and tectonic setting of protrozoic iron- Oxide (Cu-U-Au-REE) deposits, Precambrian research, 58, 241-287. https://doi.org/10.1016/0301-9268 (92)90121-4.
Karimpour, M. H., and Mazloomi A. R., 1998- Geochemistry and genesis of Kuh-e- Zar gold prospecting area (Torbate  Heydariyeh, Iran), Scientific Quarterly Journal, Geosciences, 7, 1-13.
Karimpour, M. H., Zaw Kh., and Atkinson, W. W., 2001- Fluid inclusion thermometry, stable isotope geochemistry and genesis of a specularite-rich Cu-Au-Ag deposit, QalehZari mine, Iran:  Geological Society of America Abstracts, with Programs, 33, 129.  
Kesler, E. S., 2005- Ore-Forming Fluids. Elements, 1, 13-18. https://doi.org/10.2113/gselements.1.1.13.
Lagast, J., 2009- Hydrothermal alteration mineralogy in geothermal fields with case examples from Olkaria domes geothermal field, Kenya.
Marschick, R., and Fontbot, Ã L., 1996- Copper (Iron) mineralization and superposition of alteration events at the Punta del Cobre Belt, northern Chile, Special Publication of the Society of Economic Geologists, 16, 171-189.
Mehvary. R., Noghreyan, M. and Mackizadeh, M.A., 2012- Mineralization and fluid inclusions studies on quartz mineralized veins at Kalchoyeh epithermal deposit, southwest Nain, Iranian Journal of Crystallography and Mineralogy, 20, 111-122.
Niazi, M., Asoudeh, I., Ballard, G., Jackson, J., King, G., and McKenzie, D. P., 1978- The depth of seismicity in the Kermanshah region of the Zagros Mountains (Iran), Earth and Planetary Science Letters, 40, 270-274. https://doi.org/10.1016/0012-821X (78)90097-3.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., and Jolivet, L., 2008- Arc- magmatism and subduction history beneath the Zagros Mountain, Iran: A new report of adakites and geodynamic consequences. Lithos, 106(3-4), 380-398. https://doi.org/10.1016/j.lithos.2008.09.008.
Oreskes, N., and Einaudi, M.T., 1992- Origin of hydrothermal fluids at Olympic Dam: Preliminary results from fluid inclusions and stable isotopes: Economic Geology and the Bulletin of the Society of Economic Geologists, 87(1), 64-90, https://doi.org/10.22113/gsecongeo.87.
Pollard, P.J., 2001- Sodic (calcic) alteration in Fe-oxide-Cu-Au districts: An origin via unmixing of magmatic H2O-CO2-NaCl ± CaCI2-KCl fluids. Mineralium Deposita, 36(1), 93- 100. https://dx.doi.org/10.1007/s001260050289.
Pollard, P.J., 2006- An intrusion-related origin for Cu-Au mineralization in iron oxide copper-gold (IOCG) provinces.  Mineralium Deposita, 41(2), 179-187. https://doi.org/10.1007/s00126-006-0054-x.
Réquia, K. C. M., and Xavier, R.P., 1995- Fases fluidas na evolução metamórfica do depósito de Cu-Au de Salobo, Carajás, Pará. Revista da Escola de Minas, 49, 117-122.
Rieger, A., Marschik, R., and Díaz, M., 2012- The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: New evidence from microthermometry and stable isotope geochemistry. Mineralium Deposita, 47(4), 359-369. https://doi.org/10.1007/s00126-011-0390-3.
Roedder, E., 1984- Fluid inclusions, Mineralogical Society of America, Reviews in mineralogy, 12, 646.
Sabzian, A., Masoudi, F., Asadi Harooni, H., Emami, M.H., Nezafati, N., 2015- Application of Feldespar and Hornblende Composition to Investigate the Nature and Thermobarometry Aftabrou Pluton, Northwest Uroumieh-Dokhtar Magmatic Belt, Iran. Journal of Biodiversity and Environmental Science, 6, 609-662.
Sabzian, A., Masoudi, F., Asadi-Harooni, H., Emami, M. H., and Nezafati, N., 2017- Geology of the Aftabrou Polymetallic  Deposit, Saveh, Iran, Open Journal of Geology, 7(07), 978-999. https://doi.org/10.4236/ojg.2017.77066.
Shepherd, T. J., Ranbin, A. H., and Alderton, D. H. M., 1985- A practical guide to fluid inclusion studies: Blackie and Son Ltd. Glasgow, 239. 
Sillitoe, R. H., 2003- Iron oxide - copper - gold deposits: an Andean view: Mineralium Deposite, 38(7), 787-812.  https://doi.org/10.1007/s00126-003-0379-7.       
Simard, M., Beaudoin, G., Bernard, J., and Hupé, A., 2006- Metallogeny of the Mont-de-l’Aigle IOCG deposits, Gaspé Peninsula, Québec, Canada, Mineralium Deposita, 41(6), 607-636. https://doi.org/10.1007/s00126-006-0061-y.
Sirbescu, M. L. C., and Nabelek, P., 2003- Dawsonite: An inclusion mineral in quartz from the Tin Mountain pegmatite,  Black Hills, South Dakota. American Mineralogist, 88(7), 1055–1059. https://doi.org/ 10.2138/am-2003-0714.
Stampfli, G. M., and Borel, G. D., 2002- A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrone, Earth and Planetary Science Letters, 196(1-2), 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X.
Stöcklin, J., 1968- Structural history and tectonics of Iran: A review. American Association of Petroleum Geologist Bulletin, 52(7), 1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D.
Tarantola, A., and Caumon, M. C., 2015- Ramanspectra of water in fluid inclusions: II. Effect ofnegative pressure on salinity measurement. Journal of Raman Spectroscopy, 46(10), 977-982. https://dx.doi.org/10.1002/jrs.4668.
Torresi, I., Xavier,  R. P., Bortholoto, D. F. A., and Monteiro, L. V. S, 2012- Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil):  Implications for ore genesis, Mineralium Deposita, 47(3), 229-323. https://dx.doi.org/10.1007/s00126-011-0373-4.
Van den Kerkhof, A.M., and Hein, U.F., 2001- Fluid inclusion petrography, Lithos 55(1-4), 27-47. https://doi.org/10.1016/S0024-4937(00)00037-2.
Whitney, D.L., and Evans, B.W., 2010- Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187.https://doi.org/10.2138/am.2010.3371.
Wilkinson, J. J., 2001- Fluid inclusion in hydrothermal ore deposits, Lithos, 55(1), 229-272.
Williams, P.J., 2010- Classifying IOCG deposits, in: Corriveau. L., Mumin. H., (eds.), Exploring for iron-oxide copper gold deposits: Canada and global analogues, Québec, Geological Association of Canada and Geological Survey of Canada, 11-19.
Zhang, A. Y., 2012- Evidence on the trade-off between real activities manipulation and accrual-basedearnings management, the Accounting Review87 (2), 675-703. https://doi.org/10.2308/accr-10196.
Zhang, Y.G., and Frantz, J.D., 1987- Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCL-KCL-CaCL2-H2O using synthetic fluid inclusions: chem. Geol. 64, 335-350. https://doi.org/10.1016/0009-2541 (87)90012-X.