Document Type : Original Research Paper

Authors

1 Assistant Professor, Department of Earth Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran

2 Ph.D. Student, Department of Earth Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran

3 M.Sc., Geological Survey of Iran, West Territory, Sanandaj, Iran

Abstract

Karaftu Cave is located in the 67 km northwest of Divandareh, Kurdistan province. It includes four floors, which the bottom of the second floor, in the bat’s hall, is covered by thick guano deposits. In this study, the distribution of trace elements plus rare earth elements, as well as age determination, based on 14C, of guano was investigated. Fresh guano decays through bacterial and fungal metabolism and can release organic and inorganic acids. Interactions between these acidic solutions with guano were caused by leaching and changing the distribution and ratios of elements. The rate of leaching is determined by changes in the patterns of distribution of elements and the ratios of Th/U and LREEs/HREEs. The Eu/Eu* and Ce/Ce* ratios are applied to obtain information about the paleoredox conditions of guano deposition. Based on this study, three different climatic conditions, including dry, wet, and dry terms, have been recognized. Geochemical data of guano samples on the La/Th-Hf and Th-Sc diagrams represent intermediate-mafic source rocks. Plot the samples on the Th-Sc-Zr/10 and La/Th-Sc/Ni diagrams, suggesting that their source rocks evolved in a continental island arc tectonic setting. Based on 14C dating, the onset of guano production is about 14260 ± 50 BP after the Last Glacial Maximum recorded worldwide and close to the study area in Zaribar Lake, Zagros Mountains, and Alpine Mountains. The average accumulation rate of guano deposits has been 3.7 mm/year in Karaftu Cave.

Keywords

Main Subjects

References
Batina, M. C. and Reese, C. A., 2011- A Holocene pollen record recovered from a guano deposit. Round Spring Cavern, Missouri, USA. Boreas, 40 (2): 332-341. DOI: 10.1111/j. 1502-3885. 2010.00186.x.
Bau, M. and Dulski, P., 1996- Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79: 37-55. DOI: 10.1016/0301-9268(95)00087-9.
Benda, P., Faizolâhi, K., Andreas, M., Obuch, J., Reiter, A., Ševčík, M., Uhrin, M., Vallo, P., and Ashrafi, S., 2012- Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Soc. Zool. Bohem., 76: 163-582. ISSN 1211-376X.
Bhatia, M. R. and Crook, K. A., 1986- Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to mineralogy and petrology, 92(2): 181-193. DOI: 10.1007/BF00375292.
Bird, M. I., Boobyer, E. M., Bryant, C., Lewis, H. A., Paz, V. and Stephens, W. E., 2007- A long record of environmental change from bat guano deposits in Makangit Cave, Palawan, Philippines. Earth Environ. Sci. Trans. R. Soc. Edinb., 98: 59-69. Doi 10.1017/s1755691007000059.
Borges, J. B., Huh, Y., Moon, S. and Noh, H., 2008- Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East. Chemical Geology, 254: 52-72. DOI: 10.1016/j.chemgeo.2008.06.002.
Bozorgnia, F., 1965- Qom Formation stratigraphy of the Central Basin of Iran and its intercontinental position. Bulletin of the Iranian Petroleum Institute, 24: 69-75. 
Cuffey, K. M. and Clow, G. D., 1997- Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys Research, 102: 26383-26396. DOI: 10.1029 /96JC03981.
Cullers, R. L. and Podkovyrov, V. N., 2000- Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research, 104: 77-93. DOI: 10.1016/S0301-9268 (00)00090-5.
Deer, L. N., 2011- Limestone and speleothem trace element geochemistry as tools for palaeoclimatic reconstruction, Mount Etna region, central-coastal Queensland. Ph.D thesis, Queensland University of Technology, 1: 360.
Dubinin, A., 2004- Geochemistry of rare earth elements in the ocean. Lithology and Mineral Resources, 39 (4): 289-307.
 DOI: 10.1023/B:LIMI.0000033816.14825.a2 .
Ettler, V., 2016- Soil contamination near non-ferrous metal smelters: A review. Applied Geochemistry, 64: 56-74. 
DOI: 10.1016/j.apgeochem.2015.09.020.
Forray, F. L., Onac, B. P., Tanţău, I., Wynn, J. G., Tămaş, T., Coroiu, I. and Giurgiu, A. M., 2015- A Late Holocene environmental history of a bat guano deposit from Romania: an isotopic, pollen and microcharcoal study. Quaternary Science Reviews, 127: 141-154. DOI: 10.1016/j.quascirev.2015.05.022.
Gurumurthy, G. P., Balakrishna, K., Tripti, M., Riotte, J., Audry, S., Braun, J. J. and Shankar, H. N. U., 2015- Use of Sr isotopes as a tool to decipher the soil weathering processes in a tropical river catchment, southwestern India. Applied Geochemistry, 63: 498-506. 
DOI: 10.1016/ j.apgeochem.2015.03.005.
Hunt, C. O., Gilbertson, D. D., Hill, E. A. and Simpson, D., 2015- Sedimentation, re-sedimentation and chronologies in archaeologically-important caves: problems and prospects. Journal of Archaeological Science, 56: 109-116. DOI: 10.1016/j.jas.2015.02.030.
Hutchinson, G. E. and Cowgill, U. M., 1963- Chemical Examination of a Core from Lake Zeribar, Iran. Science, 140: 67-69. DOI: 10.1126/science.140.3562.67.
Johnston, V. E., McDermott, F. and Tămaş, T., 2010- A radiocarbon dated bat guano deposit from N.W. Romania: Implications for the timing of the Little Ice Age and Medieval Climate Anomaly. Palaeogeogr., Palaeoclimtol., Palaeoecol., 291: 217–227. 
DOI: 10.1016/ j.palaeo.2010.02.031.
Liu, W. J., Liu, C. Q., Zhao, Z. Q., Xu, Z. F., Liang, C. S., Li, L. b. and Feng, J. Y., 2013- Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, China: Implications for chemical weathering and parent materials. Journal of Asian Earth Sciences, 67–68: 138-152. DOI: 10.1016/j.jseaes. 2013.02.017.
Liu, F., Miao, L., Cai, G. and Yan, W., 2015- The rare earth element geochemistry of surface sediments in four transects in the South China Sea and its geological significance. Environmental Earth Sciences, 74(3): 2511-2522. DOI: 10.1007 /s12665-015-4265-2.
Maher, Jr, L., 2006- Environmental information from guano palynology of insectivorous bats of the central part of the United States of America. Palaeogeogr., Palaeoclimtol., Palaeoecol., 237: 19-31. DOI: 10.1016 /j.palaeo.2005.11.026.
Martinez-Ruiz, F., Ortega-Huertas, M. and Palomo, I., 1999- Positive Eu anomaly development during diagenesis of the K/T boundary ejecta layer in the Agost section (SE Spain): implications for trace-element remobilization. Terra Nova, 11 (6): 290–296. DOI: 10.1046/j.1365-3121. 1999.00261.x.
McLennan, S. M., 1989- Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, Rev. Mineral, 
21: 169-200. http://rimg.geoscienceworld. org/content /21/1/169.s.
McLennan, S. M., 2001- Relationship between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2 (4): 1-24. DOI: 10.1029/20 00GC000109.
McLennan, S. M., Hemming, S., McDaniel, D. K. and Hanson, G. N., 1993- Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America, Special Paper, 284: 21–40. Doi: 10.1130/SPE284-p21. 
Morey, G. B. and Setterholm, D. R., 1997- Rare earth element in weathering profiles and sediments of Minnesota: Implications for provenance studies. Journal of Sedimentary Research, 67: 105-115. DOI: 10.1306/D4268504-2B26-11D7-8648000102C1865D. 
Obaje, S. O., Akpoborie, I. A., Ugbe, F. C. and Onugba, A., 2015- Rare Earth and Trace Elements Distribution in Sediments of River Gora, Minna Area, North-Central Nigeria: Implication for Provenance. Earth Science Research, 4: 1-10. DOI: 10.5539/esr.v4n1p103.
Onac, B. P., Forray, F., Wynn, J. G. and Giurgiu, A. M., 2014- Guano-derived δ13C-based on paleo-hydroclimate record from Gaura cu Musca Cave, SW Romania. Environmental Earth Sciences, 71 (9): 4061-4069. DOI: 10.1007/s12665-014-3124-x.
Pearce, J. A. and Parkinson, I. J., 1993- Trace element models for mantle melting: application to volcanic arc petrogenesis. In: H.M. Prichard, T. alabaster, N.B. Harris, C.R. Neary (Eds.), magmatic processes and plate tectonics. Geological Society, London, Special Publications, 76: 373-403. DOI: 10.1144/GSL.SP.1993.076.01.19.
Rimmer, S. M., 2004- Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 206: 373-391. DOI: 10.1016/j.chemgeo. 2003.12.029.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hajdas, C., Heaton, T. J.,  Hoffmann, D. L.,  Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and van der Plicht, J., 2013- IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon, 55(4): 1869–1887. DOI: 10.2458/azu_js_rc.55.16947 .
Rogers J. J. W. and Adams, J. A. S., 1969- Uranium and Thorium. In: K.H. Wedepohl (ed.), Handbook of Geochemistry. Springer, Berlin, 11-14pp. DOI: 10.1007/BF02597581.
Simandl, G. J., Fajber, R. and Paradis, S., 2013- Rare Earth Elements (REE) recovery as a by-product of fertilizer production from sedimentary Phosphate deposits -conceptual evaluation. Goldschmidt Conference. Symposium on critical and strategic materials proceedings, Victoria, British Columbia, Abstracts.
Smol, J. P. and Cumming, B. F., 2000- Tracking long-term changes in climateusing algal indicators in lake sediments. Journal of Phycology, 36: 986-1011. DOI: 10.1046/j.1529-8817.2000.00049.x.
Snyder, J. A., Wasylik, K., Fritz, S. C. and Wright Jr, H. E., 2001- Diatom-based Conductivity Reconstruction and Palaeoclimatic Interpretation of a 40-ka Record from Lake Zeribar, Iran. The Holocene, 11: 737-745. DOI: 10.1191/09596830195753
Stevens, L.R., Jr, Wright, H.E., and Ito, E., 2001. Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. The Holocene, 11(6):747-755. DOI: 10.1191/ 09596830195762.
Stöcklin, J., 1968- Structural history and tectonics of Iran: a review. AAPG Bulletin, 52: 1229–1258. DOI: 10.1306/5D25C4A5-16
C1-11D7-8645 000102C1865D. 
Su, N., Yang, S., Guo, Y., Yue, W., Wang, X., Yin, P. and Huang, X., 2017- Revisit of rare earth element fractionation during chemical weathering and river transport. Geochem., Geophys., Geosyst., 18: 935–955. DOI:10.1002/2016G C0066 59.
Sverjensky, D. A., 1984- Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1): 70-78. DOI: 10.1016/0012-821X(84)90039-6.
Taylor, S. R. and McLennan, S. M., 1985- The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
Terekhov, E. and Shcherbakova, T., 2006- Genesis of positive Eu anomalies in acid rocks from the Eastern Baltic Shield. Geochemistry International, 44(5): 439-455. DOI: 10.1134/S0016702906 050028.
Van Zeist, W., 1967- Late Quaternary Vegetation History of Western Iran. Review of Palaeobotany and Palynology, 2: 301-311. 
DOI: 10.1016/0034-6667(67)90159-5.
Van Zeist, W. and Bottema, S., 1977- Palynological Investigations in Western Iran. Palaeohistoria, 19: 19-85. DOI: 10.1191/0959683605hl846rp.
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H. and Halow, I., 1989- The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. Retrieved from, 2: 12-26. DOI: 10.1063/1.555845.
Wang, L. and Liang, T., 2015- Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Scientific reports, 5: 9-11. DOI: 10.1038/srep12483.
Wasylikowa, K., 2005- Paleoecology of Lake Zeribar, Iran, in the Pleniglacial, Lateglacial and Holocene,Reconstructed from Plant Macrofossils. The Holocene, 15: 720-735. DOI: 10.1191/ 0959683605hl846rp.
Wurster, C. M., Bird, M., Bull, I., Bryant, C. and Ascough, P., 2009- A protocol for radiocarbon dating tropical subfossil cave guano. By the Arizona Board of Regents on behalf of the University of Arizona, 51: 977-986. ISSN: 0033-8222 .
Wurster, C. M., McFarlane, D. A., Bird, M. I., Ascough, P. and Athfield, N. B., 2011- Stable isotopes of subfossil bat guano as a long-term environmental archive: insights from a Grand Canyon cave deposit. Journal of Cave and Karst Studies, 72(2): 111–121. DOI: 10.4311/jcks2009es0109.
Wurster, C. M., Munksgaard, N., Zwart, C. and Bird, M., 2015- The biogeochemistry of insectivorous cave guano: a case study from insular Southeast Asia. Biogeochemistry, 124(1-3): 163-175 .DOI: 10.1007/s10533-015-0089-0.