Document Type : Original Research Paper

Authors

1 Professor, Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Ph.D. Student, Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Assistant Professor, Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Associate Professor, Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

The Mohammadabad deposit is located in vicinity of Delijan in central province and in terms of structural zones of Iran,in the Uremia dokhtar zone. Stratabound Fe-Ce mineralization in brecciated, vein, massive, layered and laminar forms, consists ore minerals such as hematite, pyrite, chalcopyrite and magnetite ,is seen in lower Eocene volcano sedimentary unites. Amounts , ratios and diagrams of trace elements and rare earth elements show hydrothermal mineralization with the predominance of magmatic fluids. The values of δ34SCDT of sulfide minerals (-2.76 to1.51 ‰) and suggest the magmatic source for sulfur or mineralizing fluid with magmatic sulfur. The values of δ13C (mean 3.61 ‰), δ18O(mean12.946‰) related diagrams show a magmatic source for carbon, hydrothermal genesis for calcite and a mineralizing fluid dominantly magmatic source. above evidences,وthe location of the region in tensile tectonic regime in western edge position of uremia dokhtar magmatic arc during the Eocene and presence of magmatic mass in the depths of the region with high potential for iron and copper mineralization , sulfur supply ,also has played role of a heat engine to circulating and transfer of mineralizing fluids to the sea bed. Offers exhalative-hydrothermal processes model for deposit genesis in Eocene volcano sedimentary units

Keywords

Main Subjects

References
Bajwah, Z. U., Seccombe, P. K., and Offler, R., 1987- Trace element distribution, Co:Ni ratios and genesis of the big cadia iron-copper deposit, new south wales, australia. Mineralium Deposita, 22(4), 292-300. doi:10.1007/BF00204522.
Barrett, T. J., Jarvis, I., and Jarvis, K. E., 1990- Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge. Geology, 18(7), 583-586. doi:10.1130/0091-7613(1990)018<0583:Reegom>2.3.Co;2.
Cornell,  R. M., Schwertmann, H. C. U.,  2003- The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Second Edition ,Wiley‐VCH Verlag  GmbH & Co. KGaA, DOI:10.1002/3527602097.
Dare, S. A. S., Barnes, S.-J., Beaudoin, G., Méric, J., Boutroy, E., and Potvin-Doucet, C., 2014- Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49(7), 785-796. doi:10.1007/s00126-014-0529-0.
Evans, A. M., 1980- An Introduction to Economic Geology and Its Environmental Impact. Wiley , New York.
Evensen, N. M., Hamilton, P. J., and O'Nions, R. K., 1978- Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42(8), 1199-1212. doi:10.1016/0016-7037(78)90114-X.
Hatton, O. J., and Davidson, G. J., 2004- Soldiers Cap Group iron-formations, Mt Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Australian Journal of Earth Sciences, 51(1), 85-108. doi:10.1046/j.1400-0952.2003.01047.x.
Helvaci, C., 1984- Apatite-rich iron deposits of the Avnik (Bingoel) region, southeastern Turkey. Economic Geology, 79(2), 354-371. doi:10.2113/gsecongeo.79.2.354.
Hitzman, M. W., and Valenta, R. K., 2005- Uranium in Iron oxide – copper – gold (IOCG) Systems. Economic Geology, v. 100, pp. 1657-1661, doi:10.2113/gsecongeo.100.8.1657.
Hoefs, J., 2004- Stable Isotope Geochemistry: Springer-Verlag Berlin Heidelberg.
Hou, K., and Li, Y., 2014- Geochemistry and Si–O–Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation, Lvliang Group, Shanxi, China. Ore Geology Reviews, 57, 288-298. doi:10.1016/j.oregeorev.2013.09.018.
Hurtgen, M. T., Arthur, M. A., and Prave, A. R., 2004- The sulfur isotope composition of carbonate-associated sulfate in Mesoproterozoic to Neoproterozoic carbonates from Death Valley, California. Special Paper of the Geological Society of America, 379, 177-194. https://doi.org/10.1130/0-8137-2379-5.177.
Injoque, E. J., 2002- Fe oxide – Cu – Au deposits in Peru:  An integrated view.  In:  Porter  TM  (ed)  Hydrothermal  iron  oxide  copper – gold  and  related  deposits:  A  global  perspective,  vol  2.  PGC Publishing, Adelaide, pp 97–113.
Jach, R., and Dudek, T., 2005- Origin of a Toarcian manganese carbonate/silicate deposit from the Krížna unit, Tatra Mountains, Poland. Chemical Geology, 224(1-3), 136-152. doi:Doi:10.1016/j.chemgeo.2005.07.018.
Kato, Y., 1999- Rare Earth Elements as an Indicator to Origins of Skarn Deposits: Examples of the Kamioka Zn-Pb and Yoshiwara-Sannotake Cu(–Fe) Deposits in Japan. Resource Geology, 49(4), 183-198. doi:10.1111/j.1751-3928.1999.tb00045.x.
Küpeli, Ş., 2010- Trace and rare-earth element behaviors during alteration and mineralization in the Attepe iron deposits (Feke-Adana, southern Turkey). Journal of Geochemical Exploration, 105(3), 51-74. doi:10.1016/j.gexplo.2010.04.001.
Marshall, L. J., Oliver, N. H. S., and Davidson, G. J., 2006- Carbon  and  oxygen  isotope  constraints  on  fluid  sources  and  fluid – wall  rock  interaction  in  regional  alteration  and  iron-oxide–copper–gold  mineralisation,  eastern  Mt Isa  Block,  Australia.  Miner.  Deposita  41,  429–452.doi:10.1007/s00126-006-0069-3.
Marchig, V., Gundlach, H., Möller, P., and Schley, F., 1982- Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50(3), 241-256. doi:10.1016/0025-3227(82)90141-4.
Mason, B., and Moore, C., 1982- Principles of Geochemistry. Wiley, New York.
 
Nicholson, K., Nayak, V., and Nanda, J., 1997- Manganese ores of the Ghoriajhor-Monmunda area, Sundergarh District, Orissa, India: geochemical evidence for a mixed Mn source. Geological Society, London, Special Publications, 119(1), 117-121.
Niiranen, T., Mänttäri, I., Poutiainen, M., Oliver, N. H. S., and Miller, J. A., 2005- Genesis of Palaeoproterozoic iron skarns in the Misi region, northern Finland.Mineralium Deposita,40(2),192-217. doi:10.1007/s00126-005-0481-0.
Ohmoto, H., 1972- Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5), 551-578. doi:10.2113/gsecongeo.67.5.551.
Peter, J. M., and Goodfellow, W. D., 1996- Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick. Canadian Journal of Earth Sciences, 33(2), 252-283. doi:10.1139/e96-021.
Pollard, P.J., 2006- An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Miner Deposita 41, 179 (2006). doi:10.1007/s00126-006-0054-x.
Porter, T. M., ed., 2000- Hydrothermal  iron  oxide  copper-gold   and   related  deposits:  A  global  perspective  : Adelaide,  South  Australia,  PGC  Publishing,  Porter  Geoconsultancy  Pty.  Ltd.,  v. 1,  350p.
Ramdohr, P., 1980- The ore minerals and their intergrowths. Akademie-Verlag, Berlin Germany.
Rollinson, Hugh R., 1993- Using geochimical data: evaluation, presentation, interpretation. 1" ed,Logman Scientific & Techinical, London, 352 p.
Sholkovitz, E. R., and Schneider, D. L., 1991- Cerium redox cycles and rare earth elements in the Sargasso Sea. Geochimica et Cosmochimica Acta, 55(10), 2737-2743. doi:10.1016/0016-7037(91)90440-G.
Stocklin, J., 1968- Structural History and Tectonic of Iran: A Review. American Association of Petroleum Geologists Bulletin, USA, 52, 1229-1258.
Verdel, C., Hassanzadeh, J., Wernicke, B., and Stockli, A., 2013- The Eocene Golpaygan metamorphic core complex, Central Iran: A case history of orogen-parallel forearc rifting along an Andean-type continental margin.
Williams, P. J., and   Pollard, P. J., 2003- Australian  Proterozoic  iron  oxide –Cu-Au  deposits:  An  overview  with  new  metallogenic  and  exploration  data  from  the  Cloncurry  district,  northwest  Queensland.  Exploration   and   Mining Geology, Vol. 10, pp. 191-213 doi:10.2113/0100191.
Zang, W. S., Wu, G. G., Zhang, D., and Liu, A. H., 2004- Xinqiao iron-deposit field in Tongling, Anhui-geologic and geochemical characteristics and genesis. Geotectonica et Metallogenia, 28, 187-193.
Zheng, Y. F., and Hoefs, J., 1993- Carbon and oxygen isotopic covariations in hydrothermal calcites. Mineralium Deposita, 28(2), 79-89. doi:10.1007/BF00196332.
Zhou, J.-X., Huang, Z.-L., Lv, Z.-C., Zhu, X.-K., Gao, J.-G., and Mirnejad, H., 2014- Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb–Zn deposit, southwest China. Ore Geology Reviews, 63, 209-225. doi:10.1016/j.oregeorev.2014.05.012.