Document Type : Original Research Paper

Authors

1 Ph.D. Student, Earth Sciences Department, University of Tabriz, Tabriz, Iran

2 Associate Professor, Earth Sciences Department, University of Tabriz, Tabriz, Iran

Abstract

The Sarikhanloo area is located within the Qaradagh metallogenic zone in northwest Meshgin Shahr. Igneous rocks cropped out in this area include successions of Paleocene-Eocene pyroclastic rocks (tuff and andesitic-dacitic lavas with intercalations of ignimbrite) and basaltic andesite lava flows. Igneous rocks show high-K calc-alkaline to shoshonitic nature and are mainly metaluminous, formed in a post-collisional uplift tectonic setting. Hydrothermal activities in this area brought about formation of vast silicic veins and caps, along with silicic, propylitic, phyllic (non-pervasive) and intermediate argillic alterations around the veins, as well as intermediate to advanced argillic alteration halos at the margins of silicic caps. Ore minerals in the silicic veins includes pyrite, arsenopyrite and Fe-oxides, accompanied by minor malachite, formed during four mineralization stages. Fluid inclusion studies indicate that the homogenization temperature of fluid inclusions ranges from 175 to 355 °C, considering the low pressure of fluid inclusions (≤ 0-40 bars), can signify the fluid temperature at the time of entrapment. The estimated salinity values are between 0.2 and 3 wt% NaCleq.

Keywords

Main Subjects

References
Albinson, T., Norman, D. I., Cole, D.,  and Chomiak, B., 2001 -Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data: Society of Economic Geologists Special Publication 8, 1-32. DOI: 10.1130/2007.2422(14).
Barton, J. M., Fripp, R. E. P., Horrocks, P.,  and McLean, N., 1979- The geology age and tectonic setting of the Messina layered intrusion, Limpopo Mobile Belt, Southern Africa: American Journal of Science 279, 1108-1134. https://doi.org/10.1016/0301-9268(95)00074-7.
Batchelor, R. A., and Bowden, P., 1985- Petrogenetic interpretation of granitoid rock series: using multinational parameters: Chem. Geol. 48, 43-55. https://doi.org/10.1016/0009-2541(85)90034-8.
Bodnar R. J., Lecumberri-Sanchez, P., Moncada, D., and Steele-MacInnis, M., 2014- Fluid Inclusions in -Hydrothermal Ore Deposits: Treatise on Geochemistry 13, 119-142. https://doi.org/10.1016/B978-0-08-095975-7.01105-0.
Bodnar, R. J., 1993- Revised equation and table for determining the freezing point depression of H2O-NaCl solutions: Geochimica 
et Cosmochimica Acta. 57, 683-684. DOI: 10.1016/0016-7037(93)90378-A.
Brown, P. R. L., and Ellis, A. J., 1970- The Ohaki-Broadlands hydrothermal area, New Zealand; mineralogy and related geochemistry: American Journal of Science 269, 97-131. DOI: https://doi.org/10.2475/ajs.269.2.97.
Browne, P. R. L., 1978. Hydrothermal alteration in active geothermal fields: Annual Reviews in Earth and Planetary Sciences 6, 229-250. https://doi.org/10.1146/annurev.ea.06.050178.001305.
Corbett, G. J., 2001- Pacific rim Epithermal gold mineralisation: in Hancock, G., ed., Geology, exploration and mining conference, July 2001, Port Moresby, Papua New Guinea, Proceedings: Parkville: The Australasian Institute of Mining and Metallurgy, 56-68. 
https://aigjournal.aig.org.au/epithermal-gold-for-explorationists/.
Dong, G. and Morrison, G. W., 1995- Adularia in epithermal veins, Queensland; morphology, structural state and origin: Mineralium Deposita 30, 11-19. https://doi.org/10.1007/BF00208872.
Fournier, R. O., 1985. Carbonate transport and deposition in the epithermal environment: Reviews in Economic Geology 2, 63-72. 
https://doi.org/10.5382/Rev.02.04.
Harvey, C. C., and Browne, P. R. L., 1991- Mixed layered clay geothermometry in the Wairakei geothermal field, New Zealand: Clay and Clay Minerals 39, 614-621. https://doi.org/10.1346/CCMN.1991.0390607.
Harvey, C. C., Leach, T. M., and MacDonald, W. J., 1983- Integrated geoscientific exploration at Meager Creek, British Colombia, in Proceedings of the 7th Annual EPRI Geothermal Conference and Workshop. SanDiego, June 1993, 78-83. https://www.osti.gov/biblio/7369611.
Hedenquist, J. W., 1990- The thermal and geochemical structure of the Broadlands-Ohaaki geothermal system, New Zealand: Geothermics 
19, 151-185. https://doi.org/10.1016/0375-6505(90)90014-3.
Hedenquist, J. W., Arribas, A., and Gonzalez-Urien, E., 2000- Exploration for epithermal gold deposits: Reviews in Economic Geology 13, 245-277. https://www.researchgate.net/publication/228840402, Exploration for Epithermal Gold Deposits.
Hedenquist, J. W., and Browne, P. R. L., 1989- The evolution of the Waiotapu geothermal system New Zealand based on the chemical and isotopic composition of its fluids, [minerals and rocks: Geochimica et-Cosmochimica Acta. 53, 2235–2257. 
DOI:10.1016/0016-7037(89)90347-5. 
Hedenquist, J. W., and Henley, R. W., 1985- Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand; their origin, associated breccias, and relation to precious metal mineralization: Economic Geology 80, 1640–1668. http://dx.doi.org/10.2113/gsecongeo.80.6.1640.
Hemley, J. J., Montoya, J. W., Marinenko, J. W., and Luce, R. W., 1980- Equilibria in the systems Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes: Economic Geology 75, 210-228. https://doi.org/10.2113/gsecongeo.75.2.210.
Henley, R.W., 1985- The geothermal framework of epithermal deposits: Reviews in Economic Geology 2, 1-24. https://www.segweb.
org/store_info/REV/REV-02-Additional-Product-Info.pdf.
John, D. A., Garside, L. J., and Wallace, A. R., 1999- Magmatic and tectonic setting of late Cenozoic epithermal gold-silver deposits in northern Nevada, with an emphasis on the Pah Rah and Virginia Ranges and the Northern Nevada rift, in Kizis, J.A., Jr., ed., Low-sulfidation gold deposits in northern Nevada: Geological Society of Nevada Special Publication 29, 64–158.
Kuno, H., 1960- High-alumina Basalt: Petrology 1, 121–145. https://doi.org/10.1093/petrology/1.2.121.
Leach, T. M., Umali, D. U.,  and del Rosario, R. C., 1985. Epithermal mineral zonation in an active island arc: The Bacon-Manito geothermal system, Philippines, in 7th New Zealand geothermal workshop, Auckland, New Zealand, proceedings: Auckland: University of Auckland Geothermal Institute, 6-8 November, 109-114.
Middelmost, E. A. K., 1994- Naming materials in the magma/igneous rock: Earth-Science Reviews 37, 215-224. https://doi.org/10.1016/0012-8252(94)90029-9.
Ohmoto, H., and Goldhaber, M. B., 1997- Sulfur and carbon isotopes. In: Barnes, H.L. (Ed.): Geochemistry of Hydrothermal Ore Depos-its, 3rd ed. Wiley, New York, 517–611. https://ci.nii.ac.jp/naid/10017272096/en/
Peccerillo, A., Taylor, S. R., 1976- Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern 
Turkey: Contributions to Mineralogy and Petrology 58, 63-81. http://dx.doi.org/10.1007/BF00384745.
Reyes, A. G., 1990- Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment: Volcanology and Geothermal Research 43, 279-309. https://doi.org/10.1016/0377-0273(90)90057-M.
Reyes, A. G., 1991- Mineralogy, distribution and origin of acid alteration in Philippine geothermal systems, in Third symposium on deep-crust fluids, Tsukuba, Japan, extended abstracts: Tsukuba: Geological Survey of Japan, 15-16 October, 51-58. https://www.osti.gov/etdeweb/biblio/7246532.
Roedder, E., 1984- Fluid Inclusions, Reviews in Mineralogy, Vol. 12: Mineralogical Society of America, 644 p. DOI: 10.1016/0016-7037(85)90299-6.
Rye, R. O., Bethk, P. M. and Wasserman, M. D., 1992- The Stable isotope geochemistry of acid-sulfate alteration: Economic Geology 87, 
225-262. https://pubs.er.usgs.gov/publication/70016673.
Saunders, J. A., 1994- Silica and gold textures in bonanza ores of the Sleeper deposit, Humboldt County, Nevada: Evidence for colloids and implications for epithermal ore-forming processes: Economic Geology 89, 628-638. DOI: 10.2113/gsecongeo.89.3.628.
Shand, S. J., 1943- Eruptive Rocks, Their Genesis Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite: John Wiley & Sons, New York, 444 p. https://doi.org/10.1086/625564.
Simmons, S. F., and Browne, P. R. L., 2000- Hydrothermal minerals and precious metals in the Broadlands-Ohaaki Geothermal System- Implications for understanding low-sulfidation epithermal environments: Economic Geology 95, 971-999. DOI: 10.2113/95.5.971.
Simmons, S. F., and Christensen, B. W., 1994- Origins of calcite in a boiling geothermal system: American Journal of Science 294, 361-400. DOI: 10.2475/ajs.294.3.361.
Steele-MacInnis, M., Lecumberri-Sanchez, P., and Bodnar, R. J., 2012- HOKIEFLINCS H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl: Computers and Geosciences 49, 334-337. DOI: 10.1016/j.cageo.2012.01.022.
Stoffregen, R., 1987- Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado: Economic Geology 82, 
1575-1591. https://doi.org/10.2113/gsecongeo.82.6.1575.
Ulrich, T., Guenther, D., and Heinrich, C. A., 1999- Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits: Nature (London) 399, 676-679. DOI: 10.1038/21406.
Whitney, D. I., and Evans, B. W., 2010- Abbreviations for names of rock-forming minerals: American Mineralogist 95, 185–187. DOI: 10.2138/am.2010.3371.
Wilkinson, J. J., 2001- Fluid inclusion in hydrothermal ore deposits: Lithos 55, 229-272. https://doi.org/10.1016/S0024-4937(00)00047-5.
Yilmaz, H., Oyman, T., Arehart, G. B., Colakoglu, A. R.,  and Billor, Z., 2007- Low-sulfidation type Au-Ag mineralization at Bergama, Izmir, Turkey: Ore Geology Reviews 32, 81-124. DOI: 10.1016/j.oregeorev.2006.10.007.