نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکدة علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استادیار، دانشکدة علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشجوی کارشناسی ارشد، دانشکدة علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

روش الگوریتم پنجره مجزا به عنوان یک روش مؤثر در استخراج دمای سطح زمین محسوب می‌شود. نتایج الگوی حرارتی نشان می‌دهد که در حالت کلی دمای سطحی گنبد نمکی گچ در مقایسه با گنبد نمکی سیاه طاق از درجه حرارت بیشتری برخوردار است. از لحاظ ساختاری بالاتر بودن دمای گنبد نمکی گچ را می‌توان احتمالا در ارتباط با ریشه‌دار بودن این گنبد نمکی و ارتباط آن با ستون نمکی پی‌سنگی دانست. در حالی که دمای پایین‌تر گنبد نمکی سیاه طاق می‌تواند ناشی از عدم ارتباط گنبد نمکی با منبع نمکی سری هرمز باشد. نقشه‌های آنومالی حرارتی نشان‌دهنده الگوهای حرارتی متفاوت در این گنبدهای نمکی می‌باشد. الگوی مکانی آنومالی حرارتی در گنبد نمکی سیاه طاق نشان دهنده یک روند خطی در بخش شرقی آن می باشد. این الگوی حرارتی خطی در گنبد نمکی سیاه طاق را می توان در ارتباط با تابش صبحگاهی خورشید به دامنة شرقی این نمکشار دانست. با توجه به نقشة LST حاصله، بیشترین دما در گنبد نمکی گچ ۴۱.۸۷ درجة سانتی‌‍گراد و در گنبد نمکی سیاه طاق ۳۶.۷ درجة سانتی گراد می‌باشد.

کلیدواژه‌ها

موضوعات

کتابنگاری
رنگزن، ک.، کاوسی، ف.، سامانی، ب و طابری، ف.، ۱۳۹۶- بررسی آنومالی های جریان حرارتی در ساختارهای گنبدهای نمکی جهانی، کنارسیاه و خوراب با استفاده از تصاویر سنجنده های OLI و TIRS ماهواره لندست ۸، مجله زمین شناسی کاربردی پیشرفته، پاییز ۹۶، شماره ۲۵.
 doi: 10.22055/AAG.2017.21768.1696.
هاشمی، خ.، اویسی، ب و سعیدی، ع.، ۱۳۹۱- ارائه مدل کینماتیکی برای چین مرتبط با گسلش لار و ارتباط ساختاری آن با رویداد زمین­لرزة ۱۹۶۰ لار، جنوب خاوری زاگرس، مجله علوم زمین، پاییز ۹۳، سال بیست و چهارم، شماره ۹۳، صفحات ۱۸ـ۹. doi: 10.22071/gsj.2014.43442.
علوی پناه، س. ک.،1387- سنجش از  دور حرارتی و کاربرد آن در علوم زمین، انتشارات تهران، چاپ دوم، 552ص.
 
 
References
Alavi, M., 1994- Tectonics of the Zagros orogenic belt of Iran: new data and interpretation. Tectonophysics 229, 211–238, doi: 10.1016/0040-1951(94)90030-2.
Alavi, M., 2004- Regional stratigraphy of the Zagros fold-thrust belt of Iran, and its proforeland evolution. American Journal of Science 304, 1–20, doi: 10.2475/ajs.304.1.1.
Berberian, M., 1995- Master ‘blind’ thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics, 241, 193–224, doi: 10.1016/0040.
Bosák, P., Jaros, J., Spudil, J., Sulovsky, P. and Vaclavek, V., 1998- Salt diapirs in the Eastern Zagros, Iran: results of regional geological reconnaissance. Inst. Geol. Acad. Sci. Czech Repub. Geolines 7, 3–174.
Evans, D. G. and Nunn, J. A., 1989- Free thermohaline convection in sediments surrounding a salt column. J Geophys Res,vol: 94, p:413– 422. Doi: 10. 1029/JB094iB09p12413, doi: 10. 1029/JB094iB09p12413.
Falcon, N. L., 1969- Problems of the relationship between surface structures and deep displacements illustrated by the Zagros range. Geol. Soc. Lond. Spec. Pub. 3, 9–22, doi: 10.1144/GSL.SP.1969.003.01.02.
Fossen, H., 2016- Structural Geology. Cambridge University Press, doi: 10.1017/CBO9780511777806.
Geiger, S., Driesner, T., Heinrich, C. A. and Mattha, S. K., 2006- Multiphase thermohaline convection in the Earth’s crust: II. Benchmarking and application of a finite element-finite volume solution technique with a NaCl–H2O equation of state. Transp Porous Media, vol: 63, p:435–461, doi: 10.1007/s11242-005-0109-y.
Haynes, S. J. and McQuillan, H., 1974- Evolution of the Zagros suture zone, Southern Iran. Geol. Soc. Am. Bull. 85, 739–744, doi: 10.1130/0016-7606.
Hughes, J. D. and Sanford, W. E., 2004- SUTRA - MS: a version of SUTRA modified to simulate heat and multiple-solute transport. US Geol Surv Open-File Rep, p: 1207, 152, doi: 10.3133/ofr20041207.
Jackson, M. P. A. and Hudec, M. R. R., 2017- Salt Tectonics: Principles and Practice, Cambridge, United Kingdom, Cambridge University Press, doi: 10.1017/9781139003988.
Jahani, S., Callot, J. P., Frizon de Lamotte, D., Letouzey, J. and Leturmy, P., 2007- The Salt Diapirs of the eastern Fars province (Zagros, IRAN): a Brief outline of their past and present. In: Lacombe, O., Lavé, J., Roure, F., Vergés, J. (Eds.), Thrust Belt and Foreland Basin. Springer Berlin Heidelberg, pp. 289–308, doi: 10.1007/978-3-540-69426-7_15
Langevin, C. D., Dausman, A. M. and Sukop, M. C., 2010- Solute and heat transport model of the Henry and Hilleke laboratory experiment. Ground Water, vol: 48(5), p: 757–770, doi: 10.1111/j.1745-6584.2009.00596.x.
Lees, A., 1926- Insect attack and internal condition of the plant, Annals of Applied Biology 13 (4): 506-515.
McPherson, B.J.O.L, Garven, G., 1999- Hydrodynamics and overpressure mechanisms in the Sacramento basin, California. Am J Sci 299 p: 429–466, doi: 10.2475/AJS.299.6.429.
Oveisi, B. and Yousefi, T., 1999- Geological Map of Lar, 1/100000 scale. Geological survey of Iran.
Rajeshwari, A. and Mani, N. D., 2014- Estimation of Land Surface Temperature, Of Dingdigul District Using Landsat 8 data, IJRET: International Journal of Research in Engineering and Technology e, p: 2319-1163, doi: 10.15623/ijret.2014.0305025.
Ranganathan, V., 1992- Basin dewatering near salt domes and formation of brine plumes. J Geophys Res, vol: 97, p: 4667–4683, doi: 10.1029/91JB03082.
Rangzan, K., Kabolizadeh, M., Karimi, D. and Zareie, S., 2019- Supervised cross-fusion method: a new triplet approach to fuse thermal, radar, and optical satellite data for land use classification. Environ Monit Assess. 191- 48, doi: 10.1007/s10661-019-7621-y.
 Reutter, H., Olesen, F-S. and Fischer, H. 1994- Distribution of the brightness temperature of land surfaces determined from AVHRR data, Remote Sensing 15 (1), 95-104, doi:10.1080/01431169408954053.
Sarkarinejad, K. and Azizi, A., 2008- Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. J. Struct. Geol. 30, 116–136, doi:10.1016/j.jsg.2007.10.001.
Shaohua, Z., Qiming. Q., Yonghui, Y., Yujiu, X. and Guoyu, Q.,  2009- Comparison og two SplitWindow Mehtods for Retrieving Land Surface Temperature from MODIS Data , Journal of Earth Syst. Science, Vol.118, No.4, p: 345-353, doi: 10.1007/s12040-009-0027-4.
Stocklin, J., 1968- Structural history and tectonics of Iran, a review, A. A. P. G. Bull., 52(7), PP. 1229-1258, doi:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D.
Talebian, M. and Jackson, J., 2004- A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys. J. Int. 156, 506–526, doi: 10.1111/j.1365-246X.2004.02092.x.
Thorne, D., Langevin C. D. and Sukopc, M. C, 2006- Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT. J Comput Geosci, vol: 32, p: 1758–1768, doi:10.1016/j.cageo.2006.04.005.
Twiss, R. J. and Moores, E. M., 2007- Structural Geology, 2nd ed., New York-W.H. Freeman, p: 532, doi: :10.1002/gj.3350290408.
Vernant, P. and Chéry, J., 2006- Mechanical modeling of oblique convergence in the Zagros, Iran. Geophys. J. Int. 165, 991–1002, doi: 10.1111/j.1365-246X.2006.02900.x.
Yassaghi, A., 2006- Integration of landsat imagery interpretation and geomagnetic data on verification of deep-seated transverse fault lineaments in SE Zagros, Iran, Int. J. of Remote Sensing, vol: 56(12), p: 152-167, doi: 10.1080/01431160600661283.
Younes, A., 2003- On modeling the multidimensional coupled fluid flow and heat or mass transport in porous media. Int J Heat Mass Tran. Vol: 46, p: 367–379, doi: 10.1016/S0017-9310(02)00264-8.
Zareie, S., Khosravi, H., Nasiri, A. and Dastorani, M., 2016- Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran.Solid Earth, 7, pp: 1551–1564, doi: 10.5194/se-7-1551.
Zareie, S. and Kabolizadeh, M., 2020- The natural resources potential assessing aimed at territorial planning using time-varying space data of vegetation index and LST. Environ Monit Assess 192:503,
doi: 10.1007/s10661-020-08476-y.