نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زمین، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 معاونت امور اکتشاف، مدیریت اکتشاف شرکت ملی نفت ایران، تهران، ایران

چکیده

در زون ساختاری زاگرس سازند داریان با سن کرتاسه زیرین (آپتین) به عنوان جوان‌ترین سازند مخزنی گروه خامی بالایی از نظر پتانسیل مخزنی هیدروکربنی دارای اهمیت است. این‌سازند‌ در برش سطحی کوه میش 135 متر ستبرا ‌دارد و ‌از لا‌یه‌های نازک ‌تا‌ ستبر ‌و‌ توده‌ای‌ سنگ‌آهک،‌ سنگ‌آهک ‌رسی ‌و‌ مارن‌ و شیل تشکیل‌ شده ‌است. در این مطالعه ویژگی‌های ژئوشیمیایی رسوبات سازند داریان از دید کانی‌شناسی اولیه و کاربرد داده‌های ژئوشیمیایی استخراج شده از عناصر فرعی (Fe, Mn, Na, Sr) در تشخیص سطوح چینه‌ای مورد بررسی قرار گرفت. مطالعات سنگ‌نگاری منجر به شناسایی 13 ریز رخساره شد که در یک پلتفرم کربناته نوع رمپ در چهار نوع محیط رسوبی از رمپ درونی، رمپ میانی، رمپ بیرونی و بخش ژرف حوضه رسوب کرده‌اند. سه سکانس رسوبی رده سوم که در مجموع 6 دسته رخساره را دربر می‌گیرند بر اساس پراکندگی عمودی رخساره، تغییرات نمودار گامای سطحی، الگوهای برانباش رخساره‌ها، و تغییرات رو به بالا در پاراسکانس‌ها شناسایی شد. ژئوشـیمی عناصـر اصلـی و فرعـی بیانگـر کانی‌شناسـی اولیـه آراگونیتـی بـرای کربنات‌هـای سـازند داریان است. رسم نسبت Sr/Ca در برابر Mn نشان از ﺗأﺛﯿﺮ دﯾﺎژﻧﺰ در یک ﺳﯿﺴﺘﻢ دﯾﺎژﻧﺰی نیمه ﺑﺴﺘﻪ با نسبت متوسط تبادل آب به سنگ (W/R) است. تغییرات مقادیر عناصر آهن و منگنز با پراکندگی دسته رخساره‌ها (system tracts)، توالی‌های رسوبی و مرزهای چینه‌ای، در کربنات‌های سازند داریان در ارتباط بوده و روند تغییرات در بیشترین میزان عناصر یادشده و کمترین میزان آنها به ترتیب بر سطوح حداکثر غرقابی و مرزهای سکانسی منطبق است. می‌توان بر اساس تغییرات میزان عناصر فرعی برای بررسی سطح لایه، مرزهای توالی و همچنین حالت‌های اکسیداسیون و احیا استفاده کرد.

کلیدواژه‌ها

موضوعات

مطیعی، ه.، 1372، زمین‌شناسی ایران: چینه‌شناسی زاگرس، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، 536 صفحه.
Adabi, M., Salehi, M., and Ghabeishavi, A., 2010, Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran: Journal of Asian Earth Sciences, v. 39, no. 3, p. 148-160. DOI: https://doi.org/10.1016/j.jseaes.2010.03.011. 
Adabi, M. H., and Mehmandosti, E. A., 2008, Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, SW Iran: Journal of Asian Earth Sciences, v. 33, no. 3-4, p. 267-277. DOI: https://doi.org/10.1016/j.jseaes.2008.01.002.
Adabi, M. H., and Rao, C. P., 1991, Petrographic and geochemical evidence for original aragonite mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran: Sedimentary Geology, v. 72, no. 3-4, p. 253-267. DOI: https://doi.org/10.1016/0037-0738(91)90014-5.
Adachi, N., Ezaki, Y., and Liu, J., 2004, The fabrics and origins of peloids immediately after the end-Permian extinction, Guizhou Province, South China: Sedimentary Geology, v. 164, no. 1-2, p. 161-178. DOI: https://doi.org/10.1016/j.sedgeo.2003.10.007.
Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American journal of Science, 
v. 304, no. 1, p. 1-20. DOI: https://doi.org/10.2475/ajs.304.1.1.
Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., and Worden, R. H., 2009, Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: Implications for paleoenvironment and diagenesis: Geochemistry, 
v. 69, no. 1, p. 45-60.  DOI: https://doi.org/10.1016/j.chemer.2008.09.002.
Bachmann, M., and Hirsch, F., 2006, Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change: Cretaceous Research, v. 27, no. 4, p. 487-512. DOI: https://doi.org/10.1016/j.cretres.2005.09.003.
Bádenas, B., and Aurell, M., 2010, Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain): Facies, v. 56, no. 1, p. 89. DOI: https://doi.org/10.1007/s10347-009-0199-z.
Badenas, B., Aurell, M., and Bosence, D., 2010, Continuity and facies heterogeneities of shallow carbonate ramp cycles (Sinemurian, Lower Jurassic, North-east Spain): Sedimentology, v. 57, no. 4, p. 1021-1048. DOI:  https://doi.org/10.1111/j.1365-3091.2009.01129.x.
Bosence, D., 2005, A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic: Sedimentary Geology, v. 175, no. 1-4, p. 49-72.DOI: https://doi.org/10.1016/j.sedgeo.2004.12.030.
Bover-Arnal, T., Salas, R., Moreno-Bedmar, J. A., and Bitzer, K., 2009, Sequence stratigraphy and architecture of a late Early–Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain): Sedimentary Geology, v. 219, no. 1-4, p. 280-301.DOI: https://doi.org/10.1016/j.sedgeo.2009.05.016.
Brand, U., Azmy, K., and Veizer, J., 2006, Evaluation of the Salinic I tectonic, Cancañiri glacial and Ireviken biotic events: Biochemostratigraphy of the Lower Silurian succession in the Niagara Gorge area, Canada and USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 241, no. 2, p. 192-213.  DOI: https://doi.org/10.1016/j.palaeo.2006.03.004.
Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements: Journal of Sedimentary Research, v. 50, no. 4, p. 1219-1236. DOI: https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D.
Burchette, T., and Wright, V., 1992, Carbonate ramp depositional systems: Sedimentary Geology, v. 79, no. 1-4, p. 3-57.DOI: https://doi.org/10.1016/0037-0738(92)90003-A.
Cluff, R. M., 1984, Carbonate sand shoals in the middle Mississippian (Valmeyeran) Salem-St. Louis-Ste. Genevieve Limestones, 
Illinois Basin.
Corda, L., and Brandano, M., 2003, Aphotic zone carbonate production on a Miocene ramp, Central Apennines, Italy: Sedimentary Geology, v. 161, no. 1-2, p. 55-70. DOI: https://doi.org/10.1016/S0037-0738(02)00395-0.
Ćosović, V., Drobne, K., and Moro, A., 2004, Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula): Facies, v. 50, no. 1, p. 61-75.  DOI: https://doi.org/10.1007/s10347-004-0006-9.
Demicco, R. V., Lowenstein, T. K., Hardie, L. A., and Spencer, R. J., 2005, Model of seawater composition for the Phanerozoic: Geology, 
v. 33, no. 11, p. 877-880. DOI: https://doi.org/10.1130/G21945.1.
Dickson, J., 1966, Carbonate identification and genesis as revealed by staining: Journal of Sedimentary Research, v. 36, no. 2, p. 491-505. 
DOI: https://doi.org/10.1306/74D714F6-2B21-11D7-8648000102C1865D.
Flugel, E., 2010, Microfacies of carbonate rocks: analysis, interpretation and application, Springer Science and Business Media, 984 p.
Geel, T., 2000, Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 155, no. 3-4, p. 211-238. DOI: https://doi.org/10.1016/S0031-0182(99)00117-0.
Higgins, J. A., Blättler, C., Lundstrom, E., Santiago-Ramos, D., Akhtar, A., Ahm, A. C., Bialik, O., Holmden, C., Bradbury, H., and Murray, S., 2018, Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments: Geochimica et Cosmochimica Acta, v. 220, p. 512-534. DOI: https://doi.org/10.1016/j.gca.2017.09.046.
Huck, S., Heimhofer, U., Rameil, N., Bodin, S., and Immenhauser, A., 2011, Strontium and carbon-isotope chronostratigraphy of Barremian–Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a: Earth and Planetary Science Letters, v. 304, no. 3, p. 547-558. DOI: https://doi.org/10.1016/j.epsl.2011.02.031.
Jamalian, M., and Adabi, M. H., 2015, Geochemistry, microfacies and diagenetic evidences for original aragonite mineralogy and open diagenetic system of Lower Cretaceous carbonates Fahliyan Formation (Kuh-e Siah area, Zagros Basin, South Iran): Carbonates and Evaporites, v. 30, no. 1, p. 77-98. DOI: https://doi.org/10.1007/s13146-014-0211-8. 
James, G., and Wynd, J., 1965, Stratigraphic nomenclature of Iranian oil consortium agreement area: AAPG Bulletin, v. 49, no. 12, p.
 2182-2245. DOI: https://doi.org/10.1306/A663388A-16C0-11D7-8645000102C1865D.
Masse, J., Fenerci, M., and Pernarcic, E., 2003, Palaeobathymetric reconstruction of peritidal carbonates: Late Barremian, Urgonian, sequences of Provence (SE France): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 200, no. 1-4, p. 65-81. 
DOI: https://doi.org/10.1016/S0031-0182(03)00445-0.
Michalík, J., Soták, J., Lintnerová, O., Halásová, E., Bąk, M., Skupien, P., and Boorova, D., 2008, The stratigraphic and paleoenvironmental setting of Aptian OAE black shale deposits in the Pieniny Klippen Belt, Slovak Western Carpathians: Cretaceous Research, v. 29, no. 5-6, p. 871-892. DOI: https://doi.org/10.1016/j.cretres.2008.05.005.
Milliman, J., Mueller, G., and Foerstner, U., 1974, Marine carbonates. Recent sedimentary carbonates: Part, v. 1, p. 375.
Muttoni, G., and Kent, D. V., 2007, Widespread formation of cherts during the early Eocene climate optimum: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, no. 3-4, p. 348-362. DOI: https://doi.org/10.1016/j.palaeo.2007.06.008.
Palma, R. M., López-Gómez, J., and Piethé, R. D., 2007, Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza province) Neuquén Basin, Argentina: facies and depositional sequences: Sedimentary Geology, v. 195, no. 3-4, p. 113-134. DOI:
https://doi.org/10.1016/j.sedgeo.2006.07.001.
Pittet, B., Strasser, A., and Mattioli, E., 2000, Depositional sequences in deep-shelf environments: a response to sea-level changes and shallow-platform carbonate productivity (Oxfordian, Germany and Spain): Journal of Sedimentary Research, v. 70, no. 2, p. 392-407. DOI: 
https://doi.org/10.1306/2DC40918-0E47-11D7-8643000102C1865D.
Pomar, L., 2001, Types of carbonate platforms: a genetic approach: Basin Research, v. 13, no. 3, p. 313-334. DOI: https://doi.org/10.1046/j.0950-091x.2001.00152.x.
Rao, C. P., 1991, Geochemical differences between subtropical (Ordovician), cool temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia: Carbonates and Evaporites, v. 6, no. 1, p. 83-106. DOI: https://doi.org/10.1007/BF03175385.
Rao, C. P., and Adabi, M. H., 1992, Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia: Marine Geology, v. 103, no. 1-3, p. 249-272. 
DOI: https://doi.org/10.1016/0025-3227(92)90019-E.
Read, J. F., 1985, Carbonate Platform Facies Models: AAPG Bulletin, v. 69, no. 1, p. 1-21.
Renard, M., De Rafélis, M., Emmanuel, L., Beltran, C., Moullade, M., and Tronchetti, G., 2007, Fluctuations of sea-water chemistry during Gargasian (Middle Aptian) time. Data from trace-element content (Mg, Sr, Mn, Fe) in hemipelagic carbonates from La Marcouline Quarry (Cassis, SE France): Carnets de géologie. v. 03, p. 1-28. DOI: https://doi.org/10.4267/2042/8454.
Romero, J., Caus, E., and Rosell, J., 2002, A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 179, no. 1-2, p. 43-56. DOI: https://doi.org/10.1016/S0031-0182(01)00406-0.
Sharland, P. R., Casey, D., Davies, R., Simmons, M., and Sutcliffe, O., 2001, Arabian plate sequence stratigraphy, Gulf Petro Link 
Bahrain, 371 p.
Stein, M., Föllmi, K. B., Westermann, S., Godet, A., Adatte, T., Matera, V., Fleitmann, D., and Berner, Z., 2011, Progressive palaeoenvironmental change during the late Barremian–early Aptian as prelude to Oceanic Anoxic Event 1a: Evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central Italy): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 302, no. 3-4, p. 396-406, DOI: 
https://doi.org/10.1016/j.palaeo.2011.01.025.
Stein, M., Westermann, S., Adatte, T., Matera, V., Fleitmann, D., Spangenberg, J. E., and Föllmi, K. B., 2012, Late Barremian–Early Aptian palaeoenvironmental change: The Cassis-La Bédoule section, southeast France: Cretaceous Research, v. 37, p. 209-222. DOI: 
https://doi.org/10.1016/j.cretres.2012.03.021.
Tasli, K., Özer, E., and Koç, H., 2006, Benthic foraminiferal assemblages of the Cretaceous platform carbonate succession in the Yavca area (Bolkar Mountains, S Turkey): biostratigraphy and paleoenvironments: Geobios, v. 39, no. 4, p. 521-533. DOI: https://doi.org/10.1016/j.geobios.2005.05.002.
Timofeeff, M. N., Lowenstein, T. K., Da Silva, M. A. M., and Harris, N. B., 2006, Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites: Geochimica et Cosmochimica Acta, v. 70, no. 8, p. 1977-1994. DOI: 
https://doi.org/10.1016/j.gca.2006.01.020.
Van Buchem, F. S., 2010, Barremian-Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate, Gulf Petrolink. 2v, 614p.
Vaziri-Moghaddam, H., Kimiagari, M., and Taheri, A., 2006, Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran: Facies, v. 52, no. 1, p. 41-51. DOI: https://doi.org/10.1007/s10347-005-0018-0.
Veizer, J., 1983, Trace elements and isotopes in sedimentary carbonates: Reviews in Mineralogy and Geochemistry, v. 11, no. 1, p. 265-299. DOI: https://doi.org/10.1515/9781501508134-012.
Vincent, B., van Buchem, F. S., Bulot, L. G., Immenhauser, A., Caron, M., Baghbani, D., and Huc, A. Y., 2010, Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian–Lower Albian successions of southwest Iran (Dariyan and Kazhdumi formations): Geo Arabia Special Publication, v. 4, no. 1, p. 139-197.
Ziegler, M., 2001, Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon implications: 
Geo Arabia, v. 6, p. 445-450.