Document Type : Original Research Paper


Department of Earth Sciences, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran


Geophysical methods have been developed to study the particulars of physically diffusible fields in the ground. In geophysical studies, the goal is usually to detect inhomogeneities inside the earth using physical values measured at the earth's surface. Geophysicists attempt to reconstruct the Earth's interior structure using such data. The present study, which is known as the Third- order Moving Average, is the solution of an inverse problem for simultaneous estimation of the shape and depth of residual magnetic anomalies. The method was applied to the synthetic model, with and without noise, which Superiority this method will show over the Second-order Moving Average. Also, tested by the instance of field data in Geological Survey of Iran (GSI). This method, calculates a nonlinear relationship between depth and shape factor, at seven points with successive window length. Finally, the results showed that this method is very accurate for non-noise data and in has good agreement with the noisy data. which the problem, will showed the superiority of the Third-order Moving Average Method over the Second-order Moving Average method for estimating the shape and depth of buried Magnetic Anomalies. It also showed that it is suitable for real data with 5% error.


Main Subjects

Abdelrahman, E. M., and Essa, K. S., 2005. Magnetic interpretation using a least- squares curves methods. Geophysics 70, L23-L30, DOI:10.1190/1.1926575.
Abdelrahman, E. M., and Essa K. S., 2015. A new method for depth and shape determinations from magnetic data. Pure and Applied Geophysics 172, 439-460, DOI:10.1007/s00024-014-0885-9.
Abdelrahman, E. M., and Hassanein, H. I., 2000. Shape and depth solutions from magnetic data using a parametric relationship. Geophysics 65, 126-131, DOI: 10.1190/1.1444703.
Abdelrahman, E. M., Abo-Ezz, E. R., and Essa, K. S., 2012. Parametric inversion of residual magnetic anomalies due to simple geometric bodies: Exploration Geophysics 43, 178-189. DOI:10.l07l/EG11026.
Abdelrahman, E. M., Essa, K. S., El-Araby, T. M., and Abo-Ezz, E. R., 2016. Depth and shape solutions from second moving average residual magnetic anomalies. Exploration Geophysics 43, 178-189, DOI:10.1071/EG14073.
Atchuta Rao, D.A., and Ram Babu, H.V., 1980. Properties of the relation figures between the total, vertical, and horizontal field magnetic anomalies over a long horizontal cylinder ore body. Current Science 49, 584–585.
Barbosa, V. C. F., Silva, J. B. C., and Medeiros, W. E., 1999. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics 64, 48–60, DOI:10.1190/1.1444529.
Essa, K.S., and Elhussein, M., 2018. PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures, Pure and Applied Geophysics 175(2), DOI:10.1007/s00024-018-1867-0.
Essa, K.S., and Elhussein, M., 2019. Interpretation of Magnetic Data through Particle Swarm Optimization: Mineral Exploration Cases Studies, Natural Resources Research 29: 521-537, DOI: 10.1007/s11053-020-09617-3.
Gay, P., 1963. Standard curves for interpretation of magnetic anomalies over long tabular bodies: Creophysics, 28, 161-200. DOI: 10.1190/ 1.1439164.
Gerovska, D. and Arauzo-Bravo, M. J., 2003. Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index. Computers and Geosciences 29, 949-960, DOI: 10.1016/S0098-3004(03)00101-8.
Hartman, R.R., Teskey, D.J., and Friedberg, J.L., 1971. A system for rapid digital aeromagnetic interpretation. Geophysics 36, 891–918.
Hsu, S., 2002. Imaging magnetic sources using Euler’s equation. Geophysical Prospecting 50, 15-25, DOI:10.1046/j.1365-2478.2001.00282.x.
Jain, S., 1976. An automatic method of direct interpretation of magnetic profiles. Geophysics 41, 531–541, DOI: 10.1190/1.1440631.
Pengfei, L., Tianyou. L.,  Peimin, Z., Yushan, Y., Qiaoli, Z., Henglei, Z., and Guoxiong, C., 2017. Depth Estimation for Magnetic/Gravity Anomaly Using Model Correction, Pure and Applied Geophysics 174: 1729–1742, DOI: 10.1007/s00024-017-1509-y.
Prakasa Rao, T. K. S., Subrahmanyan, M., and Srikrishna Murthy, A., 1986. Nomograms for the direct interpretation of magnetic anomalies due to long horizontal cylinders: Geophysics, 51, 2156-2159. DOI:10.1 190/1.1442067.
Prakasa Rao, T. K. S., and Subrahmanyan, M., 1988. Characteristic curves for inversion of magnetic anomalies of spherical ore bodies: Pure and Applied Geophysics 126, 69-83. DOI:10.1007/BF00876915.
Radhakrishna Murthy, I.V., 1967. Note on the interpretation of magnetic anomalies of spheres. I. G. U. 4, 41–42.
Reid, A.B., Allsop, J.M., Granser, H., Millett, A.J., and Somerton, I.W., 1990. Magnetic interpretation in three dimensional using Euler deconvolution. Geophysics 55, 80–91, DOI: 10.1190/1.1442774.
Salem, A., Ravat, D., Mushayandebvu, M. F., and Ushijima, K., 2004. Linearized least-squares method for interpretation of potential field data from sources of simple geometry. Geophysics 69, DOI: 783-788, 10.1190/1.1759464.
Stanley, J. M., 1977. Simplified magnetic interpretation of the geologic contact and thin dike: Geophysics 42, 1236-1240. DOI:10.1190/1.144 0788.
Steenland, N.C., Slack, H.A., Lynch, V.M., and Langan, L., 1968. Discussion on The geomagnetic gradiometer. Geophysics 32, 877– 892, Geophysics 33, 681–684, DOI: 10.1190/1.1486915.
Thompson, D.T., 1982. EULDPH a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47, 31–37, DOI: 10.1190/1.1441278.
Werner, S., 1953. Interpretation of Magnetic Anomalies of Sheet-like Bodies. Sveriges Geologiska Underok, Series C 43: N6.