Document Type : Original Research Paper


1 Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Geology, Payame Noor University, Tehran, Iran

3 School of Geology, College of Science, University of Tehran, Tehran, Iran

4 Department of Physics and Earth Sciences, University of Ferrara, Italy

5 Department of Geosciences, University of Aveiro, Aveiro, Portugal


Takhte-Soleyman ortho-amphibolites as a part of Takab metamorphic complex are located in Northeast Takab. These rocks consist of amphibolite, Garnet-amphibolite, Kyanite-Garnet-amphibolite, Hornblendite and Epidote-amphibolite. Petrography and whole- rock geochemistry show that basalt, andesite and/or their intrusive equivalents with calc- alkaline to tholeiitic affinity and even a peridotite could be their protoliths. Trace element and Sr-Nd ratios imply that these rocks were from mantle melt sources. In chondrite normalized plots, these amphibolites can be classified into at least two groups. The first group is characterized by LREE depletion relative to HREEs and some with flat patterns. The second has an enrichment of LREEs relative to HREEs. These two different patterns and some other geochemical characters suggest MORB or MORB-like and arc affinities of the parental magmas. This can be related to the time progressive evolution of magmatism either from MORB or Back-arcto Arc or from Arc to Back-arc setting.


Main Subjects

Acosta-Vigil, a., London, l., Morgan, G.B., and Dewers, T.a., 2003. Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800 °C and 200 MPa, and applications of the aluminum saturation index, Contributions to Mineralogy and Petrology, 146, 1, 100 to 119, 
Advay, M., Moazzen, M., and Hajialioghli, 2016. Geochemical features of amphibolites from the Qarehaghaj area, East Azerbaijan, NW Iran; implications for paleotectonic setting, N. Jb. Geol. Paläont. Abh. 281/1, 35–49,
Barling, J., Goldstein, S.L., 1990. Extreme isotopic variations in Heard Island lavas and the nature of mantle reservoirs. Nature 348, 59-62,
Bea, F., Mazhari, A., Montero, P., Amini, S., and Ghalamghash, J., 2011. Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: Evidence for Variscan magmatism in a supposedly Cimmerian superterrane: Journal of Asian Earth Sciences, v. 40, no. 1, p. 172–179. doi:10.1016/j.jseaes.2010.08.005.
Bennett, V.C., Nutman, A.P., and McCulloch, M.T., 1993. Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth, Earth Planet Sci Lett 119, 299–317,
Berberian, M., and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, 18, 210–265,
Bilal,F., and Giret, A., 1999. the aluminium saturation index and the MgO/TiO2 ratio two parameters influenced by PH2O and their use to discriminate magma series, Revista Brasileira de Geociências, 29(l):55-58, DOI: 10.25249/0375-7536.1999295558.
Boynton, W. V., 1984. Cosmochemistry of the rare earth elements: meteorite studies, In: Henderson, P. (ed.): Rare Earth Element Geochemistry, Elsevier, Amsterdam, 63-114,
Caro, G., and Bourdon, B., 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets, consequences for the geochemical evolution of the mantle-crust system, Geochimica et Cosmochimica Acta 74, 3333-3349,
Coish, R.A., 1997. Rift and ocean floor volcanism from the late Proterozoic and Early Paleozoic of the Vermont Appalachians in Sinha, A.K., Whalen, J.B., Hogan, J.P. eds., The nature of magmatism in the Appalachian Orogen, Geological Society of America Memoir 191, 129-145,
Condie, K.C., 2001. Mantle Plumes and Their Record in Earth History, Oxford, UK, Cambridge Univ Press. 306 p,
Cousens, B.L., Allan, J.F., Leybourne, M.I., Chase, R.L., and Van Wagoner, N., 1995. mixing of magmas from enriched and depleted mantle sources in the northeast Pacific, West Valley segment, Juan de Fuca Ridge, Contributions to Mineralogy and Petrology, 120, 337-357,
Daliran, F., 2009. Supergene mineralogy at the Angouran nonsulphide Zn deposit, NWIran, Proceedings of the 10th Biennial SGA Meeting, Townsville, Australia, August,17–20.
Davies, J.F., Grant, R.W.E., and Whitehead, R.E.S., 1979. Immobile trace elements and Archean volcanic stratigraphy in the Timmins mining area, Ontario. Can J Earth Sci 16:305–311,
Davies, J.H., and Stevenson, D.J., 1992. Physical model of source region of subduction zone volcanics: Journal of Geophysical Research, v. 97, p. 2037– 2070, https://doi .org/10.1029/91JB02571.
De La Roche, H., 1966. Sur1, existence de plusieurs facies geochimiques dans les schistes paleozoiques des Pyrenees Luchonnaises. Geol. Rundsch., 55, 274-300,
De Paolo, D.J., 1988. Neodymium Isotope Geochemistry, Springer-Verlag, , 187 pp,
Dilek, Y., and Furnes, H., 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems: Lithos, v.113, n. 1–2, p. 1–20,
Dilek, Y., Furnes, H., 2011. Ophiolite genesis and global tectonics, geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387- 411,
Dilek, Y., and Furnes, H., 2014. Ophiolites and their origins, Elements 10, 93-100,
Dupre´, B., and Alle`gre, C. J., 1983. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146,
Fettes, D., and Desmons, J., 2007. Metamorphic Rocks, A Classification and Glossary of Terms, Cambridge University Press, 256p,
Fitton, J. G., 2007. The OIB paradox. Geological Society of America Special Papers, 430, 387-412, 
Gartzos E, Dietrich VJ, Migiros G, Serelis K, Lymperopoulou T, 2009, The origin of amphibolites from metamorphic soles beneath the ultramafic ophiolites in Evia and Lesvos (Greece) and their geotectonic implication, Lithos 108:224–242,
Gilg, H.A., Boni, M., Balassone, G., Allen, C.R., Banks, D., Moore, F., 2006. Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran:interaction of sedimentary brines with ametamorphic core complex, Miner. Deposita 41, 1–16,
Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics,390 pp., Springer, Berlin, .
Guilmette, C., Hébert, R., Wang, C., Villeneuve, M., 2009. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos 112, 149–162,
Hart, S.R., 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies: Earth and Planetary Science Letters, 90, 273–296,
Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K., and Walker, J.D., 2008. U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement, Tectonophysics, 451, 71-96,
Hastie, A.R., Kerr, A. C., Pearce, J.A., and Mitchell, S. F., 2007. Classification of AlteredVolcanic Island Arc Rocks using ImmobileTrace Elements: Development of theTh-Co DiscriminationDiagram, Journal of Petrology, 48, 2341-2357,
Heier,  K.S., Compston, W., and Mc DouGALL, I., 1965. Thorium and uranium concentrations, and the isotopic composition of strontium in the differentiated Tasmanian dolerites. Geochim. et Cosmochim. Acta 29, 643-659,
Hill, I. G., Worden, R. H., and Meighan, I. G., 2000. Yttrium: the immobility–mobility transition during basaltic weathering. Geology 28, 923–926,<0923:YTIMTD>2.3.CO;2.
Huhma, H., Hanski, E., Kontinen, A., Vuollo, J., M¨antt¨ari, I., and Lahaye, Y., 2018. Sm–Nd and U–Pb isotope geochemistry of the Paleoproterozoic mafic magmatism in eastern and northern Finland. Geol. Surv. Finl., Bull. 405.
Hynes, A., 1980. Carbonatisation and mobility of Ti, Y and Zr in Ascot Formation metabasites, SE Quebec. Contributions to mineralogy and petrology, 75, 79-87,
Irvine, T.N., Baragar, W.R.A., 1971. a guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548,
Jahn, B.M., Wu, F.Y., Lo, C.H., and Tsai, C.H., 1999. Crust–mantle interaction induced bydeep subduction of the continental crust: geochemical and Sr–Nd isotopic evidencefrom post-collisional mafic–ultramafic intrusions of the northern Dabie complex,central China, Chemical Geology 157,119-146,
Jamei, S., Ghorbani, M., Williams, I. S., Moayyed, M., 2020. Tethyan oceans reconstructions with emphasis on the Early Carboniferous Pir-Eshagh A- type rhyolite and the Late Palaeozoic magmatism in Iran, INTERNATIONAL GEOLOGY REVIEW
Jensen, L. S., 1976. A new cation plot for classifying sub- alkaline volcanic rocks, Ontario Division Mines Miscellaneous paper, No, 66. 
Kocak, K., Kurt, H., Zedef, V., Ferre, E. C., 2007. Characteristics of the amphibolites from Nigde metamorphics (Central Turkey), deduced from whole rock and mineral chemistry, Geochemical Journal, 41, 241- 257,
Maleki, L., Rashidnejad Omran, N., Hooshmandzadeh, A., Büttner, B., and Cottel, J., 2018. Retrogressed eclogites and eclogiticmetagabbrosin the Boneh Shurow Complex, Central Iran, EGU General Assembly, Geophysical Research Abstracts, v. 20.
Malek-Mahmoudi, F., Davoudian, A., Shabanian, N., Azizi,H., Asahara, Y., Neubauer, F., Dong, Y., 2017. Geochemistry of metabasites from the North Shahrekord metamorphic complex, Sanandaj-Sirjan Zone: geodynamic implications for the Pan-African basement in Iran, Precambrian Research ,293, 56 to 72 , 
Manjate, V.A., 2017. Whole-rock geochemical, U-Pb and Sm-Nd isotope characteristics of the Dongueni Mont nepheline syenite intrusion, Mozambique. Geoscience Frontiers 8, 1063-1071,
McCulloch, M. T., and Gamble, J. A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358–374,
McDonough, W., and Sun, S., 1995. Composition of the earth: Chemical Geology, 120, 223-253.,
Moghadam, H., Griffin, W. L., Li, X. H., Santos, J. F., Karsli, O., Stern, R. J., Ghorbani, Gh, Gain, S, Murphy, R, and O’Reilly, S. Y, 2018. Crustal Evolution of NW Iran: Cadomian Arcs, Archean Fragments and the Cenozoic Magmatic Flare-Up, Journal of Petrology, Vol. 58, No. 11, 2143–2190,
Mohammadi, A., Moazzen, M., Lechmann, A., and Laurent, O., 2019. Zircon U-Pb geochronology and geochemistry of Late Devonian–Carboniferous granitoids in NW Iran: Implications for the opening of Paleo-Tethys: International Geology Review, p. 1–18. doi:10.1080/00206814.2019.1675540.
Mukasa, S. B., and Wilshire, H. G.,1997. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: implications for evolution of the subcontinental lithospheric mantle. Journal of Geophysical Research102, 20133–20148,
Mullen, E. D., 1983. MnO/TiO2/P2O5, A minor element discriminant forbasaltic rocks of oceanic environments and its implications for petrogenesis, Earth Planet. Sci. Lett.,62, 53–62,
Nadimi, A., 2007. Evolution of the Central Iranian basement, Gondwana Research, 12, 3,324–333,
Patchett, P.J. and Tatsumoto, M., 1980, A routine high-precision method for Lu-Hf isotope geochemistry and chronolgy. Contributions to Mineralogy and Petrology 75, 263-267,
Pearce, J. A., 1996. a Users Guide to Basalt Discrimination Diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, vol. 12 (ed D. A. Wyman). Geol. Ass. Canada Short Course Notes, pp. 79-113.
Pearce, JA., 2014. Immobile element fingerprinting of ophio-lites. Elements 10(2):101-108,
Pearce JA, and Cann JR, 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19, 290–300,
Pearce, J. A., 1982. Trace element characteristics of lavas from destructive plate boundaries. Andesites, 8, 525-548.
Pearce, J. A., and Stern, R. J., 2006. Origin of back-arc basin magmas: Trace element and isotope perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, 63-86, 
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100,14- 48,
Pearce, J.A., and Gale, G.H., 1977. Identification of ore deposition environment from the trace element geochemistry of associated igneous host rocks in: Volcanic Processes in Ore Genesis. Geological Society of London, Special Publications, 7, 14–24,
Pearce, J.A.,  Lippard, S.J., and Roberts, S.,  1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. Spec. Publ. 1984, 16, 77–94, 
Pelissier, G., and Bolourchi, M.H., 1967. East Takab metamorphic complex. Geological Survey of Iran,Tehran. 
Pettijohn, F.J., 1949. Sedimentary rocks (1st Ed.), 526 p. New York: Harper.
Plank, T., and Langmuir, C. H., 1988. An evaluation of theglobal variations in the major element chemistry of arc ba-salts,Earth Planet. Sci. Lett.,90, 349–370, 
Ramezani, J., and Tucker, R., 2003. The Saghand region, Central Iran: U–Pbgeochronology, petrogenesis and implications for Gondwana tectonics,American Journal of Science, 303, 622–665,
Rao, B. B., and Venkataraman, G., 1982. Geochemistry and genesis of Archean metavolcanic rocks from a part of the Nuggihhalli schist belt, Hassan district, Karnataka, India, Revista Brasileira de Geociencias, 12(1-3), 375-379. 
Rollinson, H.R., 1993. Using Geochemical Data, Evaluation,Presentation, Interpretation. London, UK, Longman.
Rollinson, H., 1996. Using Geochemical Data: Evaluation,Presentation, Interpretation. Longman Ltd., Essex, England,352 pp.
Ross, P.S., and Bédard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams, Canadian Journal of Earth Sciences, 46, 11, 823– 839, 
Roy, A., Hanuma Prasad, M., and Devarajan, M.K., 2002. Palaeo-proterozoic low pressure metamorphism, deformation and syn-kinematic granite emplacement in the Proterozoic Mahakoshal supracrustal belt of central India, Gondwana Res 17, 489–500,
Rudnick, R.L., 1990. Nd and Sr isotopic compositions of lower crustal xenoliths fromNorth Queensland, Australia, Implications for Nd model ages and crustal growthprocesses, Chemical Geology, 3,195-208,
Saccani, E., 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics, Geoscience Frontiers, 6, 481–501,
Saccani, E., Dilek, Y., and Photiades, A., 2017. Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea, A case study of the Albanide-Hellenide ophiolites, Lithospher, 10, 35-53,
Saki, A., 2010. Proto-Tethyan remnants in northwest Iran: geochemistry of the gneissesand metapelitic rocks, Gondwana Research 17, 704-714,
Seewald, J.S., Seyfried, Jr., W.E., 1990. The effect of temperature on metal mobility in sub seafloor hydrothermal systems: constraints from basalt alteration experiments: Earth and Planetary Science Letters, 101, 388-403,
Semblano, F.R.D., Pereira, N.C.S, Vasquez, M.L, Macambira, M.J.B., 2016. Novos dados geológicos e isotópicos para o Domínio Iriri-Xingu, Província Amazônia Central: implicações para a idade do Grupo Iriri. Geologia USP, Série Científica, 16(3),19-38,
Shafaii Moghadam, H., Griffin, W.L., Xian-Hua Li., Santos, J., Karsli, O., Stern, Ghorbani, Gh., Gain, S., Murphy, R., and O’Reillym, S.O., 2018. Crustal Evolution of NW Iran, Cadomian Arcs, Archean Fragments and the Cenozoic Magmatic Flare-Up, Journal of Petrology, Vol. 58, No. 11, 2143–2190,
Shafaii Moghadam, H., Li, X.H., Ling, X.X., Stern, R.J., Santos, J.F., Meinhold, G., Ghorbani, G., and Shahabi, H., 2015. Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints: Lithos, 212–215, 266–279., doi:10.1016/j.lithos.2014.11.009.
Shafaii Moghadam, H., Xian-Hua. Li., Stern, R., Ghorbani, Gh. Bakhshizad, F., 2016. Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan–Takabcomplex, NWIran: Constraints on partial melting of metasediments, lithos, 240-243, 34- 48,
Shahzeidi, M., Moayyed, M., Murata, M., Yui, T.F., Arai, S., Chen, F., Pirnia, T., and Ahmadian, J., 2017. Late Ediacaran crustal thickening in Iran: Geochemical and isotopic constraints from the ~550 Ma Mishu granitoids (Northwest Iran): International Geology Review, v. 59, p. 793–811. doi:10.1080/00206814.2016.1198728.
Shaikh, D., Myashita, S., Matsueda, H., 2005. the petrological and geochemical characteristics of an ophiolite volcanic suite from the Ghayth area of Oman, Journal of Mineralogical and Petrological Sciences, 100, 202-220, 
Shaw, H.R., 1972. Viscosities of magmatic silicate liquids, An empirical method of prediction. Am. J. Sci. 272, 870–893,
Shervais, J. W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas, Earth and Planetary Science Letters, 59, 101–118,
Smith, A. D.. and Ludden, J. N., 1989. Nd evolution of the Precambrian mantle, Earth Planet, Sci. Lett. 93, 14–22,
Stern, R., Bloomer, S.H., MArtinz, F., Yamazaki, T., Harriso, 1996. The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: A first report,  The Island Arc, 5, 354-372, 
Suda, Y., Hayasaka, Y., Kimura, K., 2014. Crustal Evolution of a Paleozoic Intra-Oceanic Island-Arc-Back-Arc Basin System Constrained by the Geochemistry and Geochronology of the Yakuno Ophiolite, Southwest Japan, Journal of Geological Research, Volume 2014, Article ID 652484, 10 pages,
Sun, S. -S., AND McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345. doi:10.1144/gsl.sp.1989.042.01.
Taylor, B., and Martinez, F., 2003. Back-arc basin basalt systematics: Earth and Planetary Sci‌ence Letters, v. 210, p. 481–497, https://doi .org/10.1016/S0012-821X(03)00167-5.
Tung, K.A., Yang, H.Y., Liu, D.Y., Zhang, J.X., Yang, H.J., Shau, Y.H., Tseng, C.Y., 2012. The amphibolite-facies metamorphosed mafic rocks from the Maxianshan area, Qilian block, NW China: a record of early Neoproterozoic arc magmatism. Journal of Asian Earth Sciences 46, 177–189,
Vernon, R.H., and Clarke, G.L., 2008. Principles of Metamorphism. Cambridge University Press, 446 pp.
Vonraumer, J. F., Stampfli, G. M., Arenas, R., and Martinez, S. S., 2015. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation, International Journal of Earth Sciences 104, 1107–1121,
Weaver, B.L., 1991. the origin of ocean island basalt end-member compositions: trace-element and isotopic constraints. Earth and Planetary Science Letters 104, 381-397,
White, W.M., 2001. Geochemistry: An on-line text book,, John- Hopkins University press, 700p.
Whitehouse, M. J. , and Neumann, E.-R., 1995. Sr–Nd–Pb isotope data for ultramafic xenoliths from Hierro, Canary Islands: melt infiltration processes in the upper mantle. Contributions to Mineralogy and Petrology 119, 239–246,
Whitney, D., L., and Evans, B., W, 2010. abbreviations for names of rock forming minerals, American mineralogist, 95, 185-187,
Wilson, M., 1989. Igneous Petrogenesis. London, UK:Unwin Hyman,
Winchester, J.A, Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. J Chem Geol 20, 325–343,
Winter, J.D., 2014. Principles of igneous and metamorphic petrology, second edition, Edinburg gate, Harlow, Harlow, Essex CM20 2JE, England and Associated companies throughout world, 738pp.
Wu, Y. W., Li, C., Xu, M., j., Xiong, S., Fan, Z., Xie, C., Wang, M., 2016. Petrology and geochemistry of metabasalts from the Taoxinghu ophiolite, central Qiangtang, northern Tibet: Evidence for a continental back-arc basin system, Austrian Journal of Earth Sciences, 109/2 166 – 177,
Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571,