Document Type : Original Research Paper


1 Research Institute of Earth Sciences, Geological Survey of Iran, Tehran, Iran

2 Geological Survey of Iran, Tehran, Iran


Saveh-Razan copper (± gold) area, with WNW direction in the northwest of Urmia-Dokhtar magmatic belt, with the highest reaction to right-sided shear zones and structural trend change during the Oligomyocene, leads to the placement of semi-deep Oligomyocene diorite massifs in shallow rock depths. It is an Eocene volcano. By creating different types of mass-related hydrothermal alteration (propylitic, intermediate-advanced argillaceous, and phyllite) along the fractures, the system concentrates the mineralizations in quartz-sulfide veins, hydrothermal incisions, and concentrated sulfide-bearing filaments. Common features of metallurgy in this area are fluid homogenization temperature between 250 to 350 ° C and salinity range of 6-28% by weight of salt, containing CO2 gas and liquid phase of liquid and the presence of sulfides such as pyrite, chalcopyrite, burnite, chalcocite and sulfosalts in related reserves. There is also more gold than silver. Therefore, these features are most similar to the mass-related intermediate-type epitermal deposits that form in calcoalkalkene magmatic arcs.


Main Subjects

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., and Worlet, R., 2011. Zagros orogeny; a subduction-dominated process. Geological Magazine, v. 148, p. 692–725.
Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran: new data and interpretations:Tectonophysics, v. 229, p. 211-239.
Albinson, T., Norman, D.I., Cole, D., and Chomiak, B.A., 2001. Controls on formation of low sulfidation epithermal deposits in Mexico: constraints from fluid inclusion and stable isotope data. New Mines and Discoveries in Mexico and Central America. pp.1–32.
Allen, M., Jackson, J., and Walker, R. 2004. Late Cenozoic reorganization of the Arabia Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, TC2008, doi:10.1029/ 2003TC001530.
Allen, M.B., and Armstrong, H.A., 2008. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling: Palaeo-geography, Palaeoclimatology, Palaeoecology, 265, 52-58, doi: 10.1016/j .palaeo.2008.04.021.
Arribas, Jr., A., 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineral. Assoc. Canada Short Course Series 23, 419–454.
Azizi, H., Chung, S. L., Tanaka, T., Asahara, Y., 2011. Isotopic dating of the Khoy metamorphic complex (KMC); northwestern Iran: a significant revision of the formation age and magma source. Precambrian Research 185 (3-4), 87-94.
Caillat, C., Dehlavi, P., and Martel Jantin, B., 1978. Géologie de la région de Saveh (Iran): contribution à l’étude du volcanisme et du plutonisme tertiaires de la zone de l’Iran central. Minéralogie.Université Scientifique et Médicale de Grenoble, 1978. Français.
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., and Mohammadi, S.S., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neo-Tethyan subduction and Zagros orogeny. Lithos 162–163, 70–87.
Echavarria, L., Nelson, E., Humphrey, J., Chavez, J., Escobedo, L., and Iriondo, A., 2006. Geologic evolution of the Caylloma epithermal vein district, southern Peru. Econ. Geol. 101, 843–863.
Groves, D.I., Bierlein, F.P., 2007. Geodynamic settings of mineral deposit systems, Journal of the Geological Society, v. 164, p. 19-30.
Hassanzadeh, J., and Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics, 35(3), pp.586-621.
Hassanzadeh, J., Stockli, D. F., Horton, B. K., Axen, G. J., Stockli, L. D., Grove, M., Schmitt, A. K., and Walker, J. D., 2008. U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement: Tectonophysics, v. 451, p. 70-96.
Hedenquist, J.W., 2015. Porphyry copper potential in Mexico: Transitions from epithermal lithocaps to veins and tops of porphyry deposits. AIMMGM Presentation, Acapulco October, Extended abstract, 1–8.
Heidari, S.M., Daliran, F., Paquette, J.L., and Gasquet, D., 2015. Geology, timing and genesis of the high sulfidation Au (–Cu) deposit of Touzlar, NW Iran. Ore Geology Reviews. 65, 460-486.
Heinrich, C.A., 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Rev. Mineral. Geochem. 65, 363–387.
Hessami, K., Jamali, F., and Tabassi, H. 2003. Major Active Faults of Iran, Scale 1:2500000. International Institute of Earthquakes Engineeringand Seismology.
Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A., Fakhari, M.D., Zamanzadeh, S.M., and Grove, M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics: Tectonophysics, v. 451, p. 97–122.
Kaya, S., Dehlavi, B., and Martel, A., 1987. Geologic Map of Saveh Scale [1:250000]”, State Geological and Mineral Exploration, Vol. 39, Issue 6, pp. 44-45.
Khodaparast, S., Madanipour, S., Nozaem, R., Hessami, Kh., 2020. Structural evidence on strike slip Kinematic inversion of the Kushk-eNosrat Fault zone, Central Iran., Geopersia 10 (1), 2020, PP. 195-209, DOI: 10.22059/GEOPE.2020.291450.648508.
Kokh, M.A., Akinfiev, N.N., Pokrovski, G.S., Salvi, S., and Guillaume, D., 2017. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466.
Madanipour, S., Yassaghi, A., Ehlers, T.A., Enkelmann, E., 2018. Tectonostratigraphy, structural geometry and kinematics of the NW Iranian Plateau margin: insights from the Talesh Mountains, Iran. Am. J. Sci. 318, 208–245.
Moritz, R., Ghazban, F., and Singer, B.S., 2006. Eocene gold ore formation at Muteh, Sanandaj–Sirjan tectonic zone, Western Iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros Orogen: Economic Geology, v. 101, p. 1497-1524.
Morley, C.K., Kongwung, B., Julapour, A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H.,Srisuriyon, K., and Kazemi, H., 2009. Structural development of a major late Cenozoic basin and transpressional belt incentral Iran: The Central Basin in The Qom– saveh area. Geosphere, Volume 5, 4: 325–362.
Muntean, J.L., Kesler, S.E., Russell, N., Polanco, J., 1990. Evolution of the Monte Negro acid sulfate Au–Ag deposit, Pueblo Viejo, Dominican Republic–important factors in grade development. Econ. Geol. 85, 1738–1758.
Murakami, H., Seo, J.H., and Heinrich, C.A., 2010. The relation between Cu/Au ratio and formation depth of porphyry-style Cu–Au ± Mo deposits. Miner. Deposita 45, 11–21.
Nouri, F., Azizi, H., Stern, R.J., Asahara, Y., Khodaparast, S., Madanipour, S., Yamamoto, K., 2018. Zircon U-Pb dating, geochemistry and evolution of the Late Eocene Saveh magmatic complex, Central Iran: partial melts of sub-continental lithospheric mantle and magmatic differentiation. Lithos 314–315.
Petersen, U., and Vidal, C.E., 1996. Magmatic and tectonic controls of the nature and distribution of copper deposits in Peru. In: Camus, F., Sillitoe, R.H., Petersen, R. (Eds.), Andean Copper Deposits: New Discoveries, Mineralization, Styles and Metallogeny. Society of Economic Geologists. Special Publication, pp. 1–18.
Pirajno, F., 2009. Hydrothermal processes and mineral systems. Hydrotherm. Process. Mineral Syst.
Pirouz, M., Avouac, J.-P., Hassanzadeh, J., Kirschvink, J. L., and Bahroudi, A., 2017. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening. Earth Planet. Sci. Lett. 477, 168–182. 
Rajabpour, Sh., Behzadi, M., Jiang, Sh-Y., Rasa, I., Lehmann, B., and Ma, Y., 2017. Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit, Saveh county, northwesterncentral Iran. Ore Geology Reviews 86 (2017) 563–583.
Richards, J., Wilkinson, D., and Ulrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran: Economic Geology, v. 101, n. 8, p.
Richards, J.P., 2015.Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision: Ore Geology Reviews, v. 70, p. 323–345.
Searle, M.P., Simpson, R.L., Law, R.D., Parrish, R.R., and Waters, D.J., 2003. The structural geometry, metamorphic and magmatic evolution of the Everest Massif, High Himalaya of Nepal-South Tibet. J. Geol. Soc. Lond., 160, 345-366.
Stel, H., 1986. The effect of cyclic operation of brittle and ductile deformation on metamorphic assemblage in cataclastites and mylonites: Pageoph, v.124, p. 298-307.
Stockli, D.F., Hassanzadeh, J., Stockli, L.D., Axen, G., Walker, J.D., Dewane, T.J., 2004. Structural and geochronological evidence for oligo-miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran, Geological Society of America Abstracts with Programs, v. 36, n. 5, p. 319.
Stocklin, J., 1968. Structural history and tectonics of Iran-a review: Am. Assoc. Petr. Geol. Bull., v. 52, no. 7, p. 1229–1258
Tosdal, R. M., and Munizaga, F., 2003. Lead sources in Mesozoic and Cenozoic Andean ore deposits, north-central Chile (30 – 34°S). Mineral.Deposita, 38: 234 – 250.
Verdel, C., Wernicke, B. P., Hassanzadeh, J., and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran, Tectonics, v. 30, TC3008, p.19.
Wang, L., Qin, K.Z., Song, G.X., and Li, G.M., 2019.  A revew of intermediate sulfidation epithermal deposits andsubclassification. Ore Geology Reviews 107 (2019) 434–456.