Document Type : Original Research Paper


1 Dept. of Geology, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran

2 Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran

3 Department of Mine, Faculty of Mining Engineer, Amirkabir University of Technology, Tehran, Iran.


The Godar Sorkh area is located in the central part of the Sanandaj-Sirjan zone, 20 km southwest of the Muteh region. Gold mineralization at Godar Sorkh occurs in quartz-sulfide veins that hosted in metasedimentary rocks. Veins of mineralization typically formed along normal faults.  Rock sequences are affected by several deformation phase, gold mineralization occurs in ductile to ductile-brittle shear zones and had been under poly-phase metamorphism.  The main alterations are Sulfidation, carbonization, silicification, chloritization, and sericitization. Ore-mineral assemblages include pyrite and chalcopyrite, arsenopyrite, sphalerite, galena, and Fe-oxide.  Mean homogenization temperature in gold-bearing quartz range between 275oC and 300oC. Fluid inclusions in quartz veins are dominated by CO2-H2O-NaCl fluid. Salinity ranges from 9 to 17 wt. % NaCl equivalent. Corresponding to a depth of <2 km, Godar Sorkh deposit is formed in epizonal environment.  Measured δ18O values for the gold-bearing quartz range between 12.7 to 14.3 permil, estimated δ18Ofluid values range from +6.4 to +7.3 permil, δ34S values range from –16 to +5 permil, and estimated δ34Sfluid values range from +4.2 to -17.3 permil.  Fluid inclusion and stable isotope studies on ore-bearing quartz-sulfide veins indicating the major role of metamorphic fluids. Gold derived from metasedimentary rocks. Gold mineralization in the Godar sorkh deposit classified as an orogenic gold deposit.


Main Subjects

Abdollahi, M. J., Karimpour, M. H., Kheradmand, A., and Zarasvandi, A. R., 2009. Stable isotopes (O, H, and S) in the Muteh gold deposit, Golpaygan area, Iran. Natural Resources Research, 18(2): 137– 151.
Aliyari, F., Rastad, E., and Mohajjel, M., 2012. Gold Deposits in the Sanandaj–Sirjan Zone: Orogenic Gold Deposits or Intrusion- Related Gold Systems. Resource Geology, 62(3): 296-315.
 Asadi, S., Niroomand, S., and Moore, F., 2018. Fluid inclusion and stable isotope geochemistry of the orogenic–type Zinvinjian Cu–Pb–Zn–Au deposit in the Sanandaj–Sirjan metamorphic belt, Northwest Iran. Journal of Geochemical Exploration, 184, pp.82-96.
Bierlein, F. P., and Crowe, D. E., 2000. Phanerozoic orogenic lode gold deposits: Reviews in Economic Geology, v. 13, p. 103-139.
Brown, P.E., Lamb, W.M., 1989. P-V-T properties of fluids in the system H2O+CO2+NaCI: New graphicapresentations and implications for fl uid inclusion studies. Geochim. Cosmochim. Acta 53  1209-1221.
Chen, H. Y., Chen, Y. J., and Baker, M., 2012. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China: implications for ore genesis and mineral exploration. Chemical Geology, 310, pp.1-11.
Craw, D. and Campbell, J.R., 2004. Tectonic and structural setting for active mesothermal gold vein systems, Southern Alps, New Zealand. Journal of Structural Geology, 26(6-7), pp.995-1005.
Craw, D., MacKenzie, D. J., Pitcairn, I. K., Teagle, D. A. H., and Norris, R. J., 2007. Geochemical   signatures of mesothermal Au-mineralized late-metamorphic deformation zones, Otago Schist, New Zealand. Geochemistry: exploration, environment, analysis, 7(3), pp.225-232.
Diamond, L.W., 2003. Glossary: Terms and symbols used in fluid inclusion studies. In: Samson, I., Anderson, A., Marshall, D. (Eds.), Fluid Inclusions: Analysis and Interpretation. Mineral Association of Canada, Quebec, pp. 363–372.
Dubinina, E.O., Baskina, V.A., and Avdeenko, A.S., 2011. Nature of ore–forming fluids of the Dal’negorsk deposit: Isotopic and geochemical parameters of the altered host rocks. Geol. Ore Deposit 53, 58–73.
Ghasemi, A., and Talbot, C. J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6), 683-693.
Goldfarb, R.J., Groves, D.I., and Gardoll, S., 2001. Orogenic gold and geologic time: a global synthesis. Ore Geol. Rev. 18, 1–75. 
Goldfarb, R.J., Ayuso, R., Miller, M.L., Ebert, S.W., Marsh, E.E., Petsel, S.A., Miller, L.D., Bradley, D., Johnson, C., and McClelland, W., 2004. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation. Economic Geology, 99(4), pp.643-671.
Goldfarb, R. J., Baker, T., Dube, B., Groves, D.I., Hart, C.J.R., and Gosselin, P., 2005. Distribution, character and genesis of gold deposits in metamorphic terranes. Econ. Geol. 100, 407-450.
Goldfarb, R. J., and Groves, D. I., 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233: 2-26.
Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews. 13(1-5): 7- 27.
Groves, D.I., Goldfarb, R.J., Robert, F., and Hart, C.J.R., 2003. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research and exploration significance. Economic Geology. 98(1): 1- 29.
Groves, D. I., and Santosh, M., 2016. The giant Jiaodong gold province: the key to a unified model for orogenic gold deposits? Geoscience Frontiers, 7(3): 409-417. ‏
Hass, J. L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Economic Geology, 66(6), pp 940-946. DOI: 10.2113/ gsecongeo.66.6.940.
Hodkiewicz, P.F., Groves, D.I., Davidson, G.I., Weinberg, R.F., and Hagemann, S.G., 2009. Influence of structural setting on sulphur isotopes in Archean orogenic gold deposits, Eastern Goldfields Province, Yilgarn, Western Australia. Miner Deposita. 44, 129– 150.
Hoefs, J., 2015. Theoretical and experimental principles. In Stable isotope geochemistry (pp. 1-46). Springer, Cham.
Kerrich, R., and Wyman, D., 1990. Geodynamic setting of mesothermal gold deposits: an association with accretionary tectonic regimes. Geology 18, 882–885.<0882:GSOMGD>2.3.CO;2.
Kouhestani, H., Rastad, E., Rashidnejad-Omran, N., and Mohajjel, M., 2006. Gold Mineralization in Chah-Bagh Ductile-Brittle Shear Zones, Muteh Mining District, Sanandaj-Sirjan Zone. Scientific Quarterly Journal, GEOSCIENCES, 60(15): 142-165.   
Kouhestani, H., Rashidnejad-Omran, N., Rastad, E., Mohajjel, M., Goldfarb, R.J., and Ghaderi, M., 2014. Orogenic gold mineralization at the Chah Bagh deposit, Muteh gold district, Iran. Journal of Asian Earth Sciences, 91: 89-106.
Kreuzer, O.P., 2005. Intrusion-hosted mineralization in the Charters Towers Goldfield, North Queensland: new isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Economic Geology, 100(8), pp.1583-1603.
Méheut, M., Lazzeri, M., Balan, E., and Mauri, F., 2007. Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochimica et Cosmochimica Acta, 71(13), pp.3170-3181.
McCuaig, C., and Kerrich, R., 1998. P-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits: Evidence from Alteration Systematics. Ore Geology Reviews, 12, 381-453. (98)00010-9.
Mohajjel, M., Fergusson, C.L., and Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397-412. (02)00035-4.
Nesbitt, B.E., 1991. Phanerozoic gold deposits in tectonically active continental margins, in Foster, R.P., editor, Gold Metallogeny and Exploration: Blackie and Sons Ltd., Glasgow, p. 104-132. DOI: 10.1007/978-1-4613-0497-5_4.
Niroomand, Sh., Goldfarb, R.J., Moore, F., Mohajjel, M., and Marsh, E.E., 2011. The Kharapeh orogenic gold deposit: geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran. Mineralium Deposita. 46, 409– 428.
Ohmoto, H., and Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L., (Ed.), Geochemistry of Hydrothermal Ore Deposits, Wiley, New York, 798 p.
Rashidnejad-Omran, N., Emami, M.H., Sabzehei, M., Pique, A., Rastad, F., Behhon, H., and Juteau, T., 2001. Metamorphice and Magmatic event of the Muteh Gold Mine (Northeast Golpayegan)., GEOSCIENCES, 11(43–44):88–99. (in Persian). 30925.
Robert, F., Boullier, A.M., and Firdaous, K., 1995. Gold - quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. Journal of Geophysical Research: Solid Earth, 100(B7): 12861-12879.
Roedder, E., 1984. Volume 12: Fluid inclusions. Mineralogical Society of America.
Sakhdari, M., Behzadi, M., Yazdi, M., Rachidnejad-Omran, N.,  and Sadeghi Naeini, M., 2021. Geology, Mineralization and Geochemistry of Au in the Godar Sorkh area, Muteh region, Sanandaj-Sirjan zone, Journal of   Economic Geology, 13(2), pp. 245-265. Doi: 10.22067/econg. v13i2.85427.
Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., and Hashem Emami, M., 2008. Tectono-magmatic evolution of the Neyriz metamorphic complex, Quri-Kor-e-sefid area (SanandajSirjan Zone, SW Iran). J. of As. Ear. Sc., 31: 504–521.
Seward, T. M., 1973. Thio complexes of gold and the transport of gold in hydrothermal solutions,
Geochimica et Cosmochimica Acta 37, 379-399.
Seward, T.M., 1991. The hydrothermal geochemistry of gold. In: Foster, R. P. (Ed.), gold metallogeny and exploration. Blakie and Sons Ltd, pp. 37-62.
Shepherd, T.J., Rankin, A.H., and Alderton, D.H., 1985, A practical guide to fluid inclusion.
Sheppard, S.M.F., 1986. Characterization and isotopic variations in natural waters. Rev. Mineral. 16, 165–183.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits: Lithos. 55, 229- 272.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185– 187.