Document Type : Original Research Paper

Authors

1 Department of Economic Geology, Faculty of Geology, University of Tehran, Tehran, Iran

2 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The Janja Cu-Mo porphyry deposit is located at 70 km south of the Nehbandan, Sistan suture zone, Eastern Iran. The porphyry mineralization in the Janja deposit is temporally and spatially associated with the diorite to quartz diorite and granodiorite granular to porphyry stocks that intruded in the Cretaceous flysch units. The Janja intrusions are represented by a Calc-alkaline and metaluminous geochemical affinity, and belong to the I-type granitoid series and subduction-related magmas in composition. Hydrothermal alterations in the area have been completely influenced by the Janja intrusion and as a result of the activity of these hydrothermal fluids, various types of potassic, propylitic, argillic and rarely phyllic alteration zones have been formed. In this deposit, three mineralization styles have been recognized including disseminated, vein-veinlet and stockwork which mineralization is mainly associated with potassic alteration. Mineralization zones in porphyry systems, including the supergene, enriched and hypogene zone, have been identified in the Janja deposit, which are the result of changes in the water table, weathering and erosion effects. The main sulfide minerals consist of chalcopyrite, pyrite, covellite, chalcocite, molybdenite, bornite, and oxide minerals including magnetite, hematite, goethite and hydro carbonate minerals including malachite and azurite. Fluid inclusion studies showed a homogenization temperature range from 301 to 
540 ˚C and a mean salinity of 19 wt%NaCl for two-phase inclusions and a homogenization temperature range between 254 and >550 ˚C and mean salinities of 54 wt % NaCl for multiphase fluid inclusions. The results of these studies show that mixing processes have taken place in the Janja deposit and have caused the deposition of Cu-Mo-(Au) mineralization. Eventually, according to the various characteristics of the Janja deposit, including tectonic environment, host rock, mineralogy, ore-forming fluid, metal ore assemblage, mineralization and alteration patterns, and comparison of these characteristics with other porphyry deposits, it can be concluded that mineralization in Janja deposit is comparable with continental margin-type porphyry Cu-Mo-(Au) deposits.

Keywords

Main Subjects

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., and Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6), 692-725. DOI: 10.1017/S001675681100046X.
Aghazadeh, M., Hou, Z., Badrzadeh, Z., and Zhou, L., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geol. Rev. 70, 385–406. 10.1016/j.oregeorev.2015.03.003.
Aliyari, F., Rastad, E., and Mohajjel, M., 2012. Gold Deposits in the Sanandaj–Sirjan Zone: Orogenic Gold Deposits or Intrusion- Related Gold Systems. Resource Geology, 62(3), 296-315. https://doi.org/10.1111/j.1751-3928.2012.00196.x.
Asadi, S., Moore, F., and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth Sci. Rev. 138, 25–46. DOI:10.1016/j.earscirev.2014.08.001.
Audétat, A., and Günther, D., 1999. Mobility and H2O loss from fluid inclusions in natural quartz crystals. Contributions to Mineralogy and Petrology, 137(1), 1-14.
Auditat, A., Pettke, T., Heinrich, C. A., and Bodnar, R. J., 2008. The composition of magmatic hydrothermal fluids in barren and mineralized intrusions. Econ Geol, 103, 877-908.
Baker, T., Bickford, D., Juras, S., Lewis, P., Oztas, Y., Ross, K., and Creaser, R. A., 2016. The geology of the Kisladag porphyry gold deposit, Turkey. Soc. Econ. Geologists Spec. Publ, 19, 1-27.
Becker, S. P., Fall, A., and  Bodnar, R. J., 2016. Synthetic fluid inclusions. XVII. 1 PVTX properties of high salinity H2O-NaCl solutions (> 30 wt% NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Economic Geology, 103(3), 539-554. doi.org/10.2113/gsecongeo.103.3.539.
Bodnar, R. J., and Samson, I., 2003. Introduction to fluid inclusions. Fluid inclusions: Analysis and interpretation, 32, 1-8.
Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D., and Steele-MacInnis, M., 2014. Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry, Second Editionth edn. Elsevier, Oxford, 119-142. http://dx.doi.org/10.1016/b978-0-08-095975-7.01105-0.
Boomeri, M., 2014. Ore Deposits and indexes of Sistan Baluchestan province. 6th symposium of Iranian society of Economic Geology.
Boomeri, M., Moradi, R., Stein, H., and Bagheri, S., 2019. Geology, Re-Os age, S and O isotopic composition of the Lar porphyry Cu-Mo deposit, southeast Iran. Ore Geology Reviews, 104, 477-494. DOI: 10.1016/j.oregeorev.2018.11.018.
Camp, V.E., and Griffis, R.J., 1982. Character genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran: Lithos, v. 15, p. 221- 239.
Calagari, A, A., 2004. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, England. v. 28, p. 179–189. DOI: 10.1016/S1367-9120(03)00085-3.
Chappel, B. W., and White, A. J. R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4), 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x.
Cox, K. G., Bell, J. D., and Pankhurst, R. J., 1979. The interpretation of igneous rocks, George Allen and Unwin. https://doi.org/10.1007/978-94-017-3373-1-3.
Footohi Rad, G.R., 2004. Petrology and geochemistry of metamorphosed ophiolites of east of Birjand, unpublished Ph.D Thesis, Tarbiat Moallem University of Tehran, Iran, 324 pp.
Goldstein, R. H., Samson, I., Anderson, A., and Marshall, D., 2003. Petrographic analysis of fluid inclusions. Fluid inclusions: Analysis and interpretation, 32, 9-53.
Hezarkhani, A., 2008. Hydrothermal evolution of the Miduk porphyry copper system, Kerman, Iran: a fluid inclusion investigation. International Geology Review, 50(7), 665-684.
Hezarkhani, A., 2006. Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27(3), 326-340. DOI: 10.1016/j.jseaes.2005.04.005.
Hou, M.D., Zhang, H.R., and Jia, J.W., 2013. New research on the genesis of Sungun porphyry Cu-Mo Deposit in Iran. Geol. Sci. Technol. Inf. 32 (5), 174–181. https://doi.org/10.1016/j.oregeorev.2021.104013.
Imer, A., Richards, J. P., and Muehlenbachs, K., 2016- Hydrothermal evolution of the Çöpler porphyry-epithermal Au deposit, Erzincan province, central eastern Turkey. Economic Geology, 111(7), 1619-1658. DOI doi.org/ 10.2113/ econgeo .111.7 .1619.
Irvine, T.N.J., and Baragar, W.R.A.F., 1971- A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5), 523-548. https://doi.org/10.1139/e71-055.
Karimpour, M. H., Malekzadeh Shafaroudi, A., Stern, C. R., and Farmer, L., 2012. Petrogenesis of Granitoids, U–Pb zircon geochronology, Sr–Nd isotopic characteristic and important occurrence of Tertiary mineralization within the Lut Block, Eastern Iran. Journal of Economic Geology, 4(1), 1-27.
Kou, G.Y., Xu, B., Zhou, Y., Zheng, Y. Ch., Hou, Z.Q., Zhou, L.M., Zhang, Y.F.,  and Yu, J. X., 2021- Geology and petrogenesis of the Sungun deposits: Implications for the genesis of porphyry-type mineralization in the NW Urumieh–Dokhtar magmatic Arc, Iran. Ore Geology Reviews, 131, 104013. doi.org/10.1016/j.oregeorev.2021.104013.
Kouzmanov, K., Pokrovski, G. S., Hedenquist, J. W., Harris, M., and Camus, F., 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Soc. Econ. Geol. Spec. Publ, 16, 573-618.
Large, R.R., Huston, D.M., Goldrick, P., and Tuxton, P.A., 1989. Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models. Economic Geology Monographs, 6(1): 520–535. DOI: https://doi.org/10.5382/Mono.06.40.
Lecumberri Sanchez, P., 2013. Spatial and temporal evolution of fluids in hydrothermal ore deposits (Doctoral dissertation, Virginia Tech).
Maanijou, M., Mostaghimi, M., Abdollahy-Riseh, M., Sepahi-Gerow, A.A., 2013. Systematic sulfur stable isotope and fluid inclusion studies on veinlet groups in the Sarcheshmeh porphyry copper deposit: based on new data. Economic Geology 4, 217-239. 10.22067/ECONG.V4I2.16492.
McInnes, B.I.A., Evans, N.J., Belousova, E., Griffin, W.T., and Andrew, R.L., 2003. Timing of mineralization and exhumation processes at the Sar Cheshmeh and Meiduk porphyry Cu deposits, Kerman belt, Iran. In: Eliopoulos (Ed.), Mineral Exploration and Sustainable Development (7th Biennial SGA Meeting Athens, August 24–28). Millpress, Rotterdam, pp. 1197–1200.
Mohajjel, M., and Fergusson, C.L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56:3, 263-287. https://doi.org/10.1080/00206814.2013.853919.
Mohajjel, M., Fergusson, C. L., and Sahandi, M. R. 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4), 397-412. https://doi.org/10.1016/S1367-9120(02)00035-4.
Mohammadi, A., Burg, J. P., Bouilhol, P., and  Ruh, J., 2016. U–Pb geochronology and geochemistry of Zahedan and Shah Kuh plutons, southeast Iran: Implication for closure of the South Sistan suture zone. Lithos, 248, 293-308. DOI: 10.1016/j.lithos.2016.02.003.
Pearce, J. A., Harris, N. B., and Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4), 956-983. DOI: 10.1093/petrology/25.4.956.
Peccerillo, A., and Taylor, S. R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1), 63-81. https://doi.org/10.1007/BF00384745.
Pars Olang, 2016, Final report of the preliminary phase of Janja area.
Razique, A., Tosdal, R. M., and Creaser, R. A., 2014. Temporal evolution of the western porphyry Cu-Au systems at Reko Diq, Balochistan, western Pakistan. Economic Geology, 109(7), 2003-2021. DOI: 10.2113/econgeo.109.7.2003.
Richards, J. P., and Sholeh, A., 2016. The Tethyan tectonic history and Cu-Au metallogeny of Iran. Economic Geology, Special Publication 19: 193–212.
Richards, J. P., 2015. Tectonic, magmatic and metallogenic evolution of the Tethyan Orogen: From subduction to collision, Ore Geology Reviews, 70: 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009.
Richards, J. P., Wilkinson, D., and Ullrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101(8), 1455-1496. https://doi.org/10.2113/gsecongeo.101.8.1455.
Roedder, E., and Bodnar, R. J., 1980. Geologic pressure determinations from fluid inclusion studies. Annual review of earth and planetary sciences, 8(1), 263-301.doi:10.1146/annurev.ea.08.050180.001403.
Rusk, B. G., Reed, M. H., Dilles, J. H., Klemm, L. M., and Heinrich, C. A., 2004. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT. Chemical Geology, 210(1-4), 173-199.
Sahandi, R., 2013. Structural geology map of Iran (1:1000000 scale). Geol. Surv. Of Iran. Sawkins, F.J., 1990. Metal deposits in relation to plate tectonics. vol. 17. Springer-Verlag, Berlin, pp. 14–60.
Shahabpour, J., 2008. Aspects of alteration and mineralization at the Sar Cheshmeh copper-molybdenum Deposit, Kerman, Iran: Unpub Ph.D. thesis Leeds University, 342 pp.
Shand, S. J., 1943. Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. J. Siahcheshm, K., Calagari, A. A., and Abedini, A., 2014. Hydrothermal evolution in the Maher-Abad porphyry Cu–Au deposit, SW Birjand, Eastern Iran: evidence from fluid inclusions. Ore Geology Reviews, 58, 1-13.
Taghipour, N., Aftabi, A., and Mathur, R., 2008. Geology and Re-Os geochronology of mineralization of the Miduk porphyry copper deposit, Iran. Resour. Geol. 58, 143–160. https://doi.org/10.1111/j.1751-3928.2008.00054.x.
Tirrul, R., Bell, I.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin 94, 134–150. https://doi.org/10.1130/0016-7606 (1983)94<134: TSSZOE >2.0.CO; 2.
Waterman, G.C., and Hamilton, R.L., 1975. The Sar-Cheshmeh porphyry copper deposit. Econ. Geol. 70, 568–576. https://doi.org/10.2113/gsecongeo.70.3.568.
Whitney, D. L., and Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95 (1). 185-187. doi:10.2138/am.2010.3371.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4), 229-272. https://doi.org/ 10.1016/ S0024-
4937 (00)00047-5.
Zarasvandi, A., Liaghat, S., and Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, Central Iran. International Geology Reviews 47, 620-646. DOI: 10.2747/0020-6814.47.6.620.
Zarasvandi, A., Rezaei, M., Raith, J., Lentz, D., Azimzadeh, A. M., and  Pourkaseb, H., 2015. Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran. Journal of Asian Earth Sciences, 111, 175. https://doi.org/10.1016/j.jseaes.2015.07.029.