نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زمین، دانشکده علوم، دانشگاه شیراز، شیراز، ایران

2 گروه علوم زمین، دانشکده علوم و فناوری‌های نوین، دانشگاه تحصیلات تکمیلی و فناوری پیشرفته کرمان، کرمان، ایران

3 گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

4 مرکز تحقیقات و فراوری مواد معدنی ایران، تهران، ایران

چکیده

گستره معدنی سنگان در شمال کمربند ماگمایی سنوزوییک خاور ایران عمدتاً از سنگ‌های آتش فشانی و آذرآواری (پیروکلاستیک) اسیدی-حدواسط تشکیل گردیده که تحت نفوذ توده‌های گرانیتوییدی ائوسن قرار گرفته‌اند. در کانسار اسکارن آهن باغک، این گرانیتوییدها از بیوتیت‌کوارتزمونزونیت پورفیری، بیوتیت سینیت ‌تا بیوتیت سینوگرانیت‌ و آلکالی فلدسپار کوارتز سینیت تا آلکالی فلدسپار گرانیت پیش از کانی‌زایی و کوارتز آلکالی سینیت و کوارتز سینیت‌های هم زاد با کانی‌زایی تشکیل شده‌اند. این گرانیتوییدهای نوع I ماهیت متاآلومین منیزیمی، کالک آلکالن، آلکالن پتاسیم بالا تا شوشونیتی دارند. این گرانیتوییدها غنی‌شدگی نسبی عناصر LREE/HREE  و LILE /HFSE، بی‌هنجاری منفی Eu, Sr, Ta, Th و Ti و بی‌هنجاری مثبت Th, U, K, Ba, Rb به همراه مقادیر بالای La و نسبت Zr/Nb, Nb/Th, Nb/U   و Nb/La را نشان می‌دهند که نه تنها منشأ گوشته‌ای نشأت گرفته از لیتوسفر اقیانوسی فرورونده، بلکه آلایش پوسته قاره‌ای در تکامل ماگمای سازنده آنها را پیشنهاد می‌کند. مقادیر Sm/Yb در برابر La/Sm, Sm/Yb در برابر Sm و Dy/Yb در برابر La/Yb نشان می‌دهد ماگمای اولیه از ذوب‌بخشی اندک (2 تا 5 درصد) لرزولیت‌های گارنت-اسپینل‌دار در ژرفایی حدود 68-66 کیلومتری گوشته بالایی، تحت‌تأثیر آلایش پوسته‌ای قرار گرفته است. بنابر این پژوهش، جایگاه زمین‌ساختی-ماگمایی گرانیتوییدها، کمان ماگمایی همزمان تا پس از برخورد قاره‌ای پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات

قنادپور، س.، هزارخانی، ا.، نوریان، ش. و گل‌محمدی، ع.، 1398، معدن باغک (بخش مرکزی معادن سنگان): ارتباط متالوژنی کانی‌های حاوی عناصر نادر خاکی با پرتوزایی. پژوهش‌های دانش زمین، سال 10، شماره 37، ص 163-185.
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey, Journal of Volcanology and Geothermal Research, 102, 67-95, https://doi.org/10.1016/S0377-0273(00)00182-7.
Almeida, M.E., Macambira, M.J.B., and Oliveira, E.C., 2007. Geochemistry and zircon geochronology of the I-type high-K calcalkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97-1.96 Ga) in central portion of Guyana Shield, Percambrian Research, 155, 69-97, doi:10.1016/j.precamres.2007.01.004.
Annen, C., Blundy, J.D., and Sparks, R.S.J., 2006. The Genesis of calcalkaline intermediate and silicic magmas in deep crustal hot zones, Journal of Petrology, 47, 505-539, https://doi.org/10.1093/petrology/egi084.
Atherton, M.P., and Ghani, A.A., 2002. Slab breakoff: a model for Caledonian, late granite syncollisional magmatism in the orthotectonic metamorphic zone of Scotland and Donegal, Ireland, Lithos, 62, 65-85, doi:10.1016/S0024-4937(02)00111-1.
Boynton, W.V., 1984. Cosmochemistry of the rare earth elements; meteorite studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry, (Developments in Geochemistry2), Elsevier, Amsterdam, 63-114, https://doi.org/10.1016/B978-0-444-42148-7.50008-3.
Brown, W.M., Kwak, T.A.P., and Askins, P.W., 1984. Geology and geochemistry of a F-Sn-W skarnsystem- The Hole 16 deposit, Mt Garnet, North Queensland, Australia,Australian Journal of EarthSciences, 31, 317–340, https://doi.org/10.1080/14400958408527934.
Chappell, B., and White, A., 1992. I-and S-type granites in the Lachlan Fold Belt, Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2), 1-26.‏
Chappell, B., and White, A., 2001. Two contrasting granite types 25 years later.Australian Journal of Earth Sciences, 48, 489-499, https://doi.org/10.1046/j.1440-0952.2001.00882.x.
Çoban, H., 2007. Basalt magma genesis and fractionation in collision- and extension-related provinces: A comparison between eastern, central and western Anatolia,Earth-Science Reviews, 80(3–4), 219–238, https://doi.org/10.1016/j.earscirev.2006.08.006.
Cotton, J., Le Dez, A., Bau, M., Caroff, M., Maury, R.C., Dulski, P., Fourcade, S., Bohn, M., and Brousse, R., 1995. Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts, evidence from French Polynesia, Chemical Geology, 119(1–4), 115–138, https://doi.org/10.1016/0009-2541(94)00102-E.
Defant, M.J., and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere,Nature, 347, 662-665, https://doi.org/10.1038/347662a0.
Esperanca, S., Crisci, M., de Rosa, R., and Mazzuli, R., 1992. The role of the crust in the magmatic evolution of the island Lipari (Aeolian Islands, Italy), Contributions to Mineralogy and Petrology, 112, 450-62, https://doi.org/10.1007/ BF00310777.
Fan, W.M., Gue, F., Wang, Y.J., and Lin, G., 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extention in the northen Da Hinggan Mountains, northeastern China, Journal of Volcanology and Geothermal Research, 121, 115- 135, https://doi.org/10.1016/S0377-0273(02)00415-8.
Frost, B.R., and Frost, C.D., 2008. A geochemical classification for feldspathic igneous rocks, Journal of Petrology, 49(11), 1955-1969.‏
Furman, T., and Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province, Lithos, 48, 237-262, https://doi.org/10.1016/S0419-0254(99)80014-7.
Furman, T., 2007. Geochemistry of East African Rift Basalts: on overview, Journal of African Earth Science, 48, 147-160, doi:10.1016/j.jafrearsci.2006.06.009.
Ghannadpour, S.S., Hezarkhani, A., and Golmohammadi, A., 2018. Applying 3D U-statistic method for modeling the iron mineralization in Baghak mine, central section of Sangan iron mines, Geosystem Engineering, 21(5), 262-272,‏ https://doi.org/10.1080/12269328.2017.1421106.
Golmohammadi, A., Karimpour, M.H., Malekzadeh Shafaroudi, A., and Mazaheri, S.A., 2015. Alteration mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran, Ore Geology Reviews, 65(2), 545–563, https://doi.org/10.1016/j.oregeorev.2014.07.005.
Harris, N.B.W., Duyverman, H.J., and Almand, D.C., 1983. The trace element and isotope geochemistry of the Sabaloka igneous complex, Sudan, Journal of Geological Society of London, 140, 245-256, https://doi.org/10.1144/gsjgs.140.2.0245.
Hole, M.J., Saunders, A.D., Marriner, G.F., and Tarney, J., 1984. Subduction of pelagic sediments: implication for the origin of Ceanomalous basalts from Alexander Islands, Journal of Geological Society of London, 141, 453-472. https://doi.org/10.1144/gsjgs.141.3.0453.
‏Irvine, T.N., and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks, Canadian journal of earth sciences, 85, 523-548, https://doi.org/10.1139/e71-055.
Kampunzu, A.B., Tombale, A.R., Zhai, M., Bagai, Z., Majaule, T., and Modisi, M.P., 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton,Lithos, 71, 431-460, https://doi.org/10.1016/S0024-4937(03)00125-7.
Kay, S.M., and Mpodozis, C., 2001. Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust, Geological Society of American, 11, 4-9, doi:10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2.
Kinzler, R.J., 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis, Journal of Geophysical Research: Solid Earth, 102(1), 853-874, https://doi.org/10.1029/96JB00988.
Kolb, M., Von Quadt, A., Peytcheva, I., Heinrich, C.A., Fowler, S.J., and Cvetković, V., 2013. Adakite-like and normal arc magmas: distinct fractionation paths in the east Serbian segment of the Balkan-Carpathian arc, Journal of Petrology, 54, 421-451, https://doi.org/10.1093/petrology/egs072.
Malekzadeh Shafaroudi, A., Karimpour, M.H., and Golmohammadi, A., 2013. Zircon U-Pb geochronology and petrology of intrusive rocks in the C-North and Baghak districts, Sangan iron mine, NE Iran. Journal of Asian Earth Sciences, 64, 256-271. https://doi.org/10.1016/j.jseaes.2012.12.028.
Mazaheri, S.A., 1996. Petrological studies of skarns from Marulan, New South Wales, Australia and Sangan, Khorassan, Iran, University of California, Ph, Dissertation, 318p.
Mazhari, N., Malekzadeh Shafaroudi, A., Ghaderi, M., Star Lackey, J., Lang Farmer, G., and Karimpour, M.H., 2017. Geochronological and geochemical characteristics of fractionated I-type granites associated with the skarn mineralization in the Sangan Mining Region, NE Iran, Ore Geology Reviews, 84, 116–133, https://doi.org/10.1016/j.oregeorev.2017.01.003.
Mehrabi, B., Siani, M.G., Zhang, R., Neubauer, F., Lentz, D.R., Fazel, E.T., and Shahraki, B.K., 2021. Mineralogy, petrochronology, geochemistry, and fluid inclusion characteristics of the Dardvay skarn iron deposit, Sangan mining district, NE Iran. Ore Geology Reviews, 134, 104146,‏ https://doi:10.1016/j.oregeorev.2021.104146.
Middlemost, E.A., 1994. Naming materials in the magma/igneous rock system. Earth-science reviews, 37(3-4), 215-224.
Nagudi, N., Koberl, C., and Kurat, G., 2003. Petrography and geochemistry of the Sigo granite, Uganda and implications for origin, Journal of African Earth Sciences, 36, 1-14, https://doi.org/10.1016/S0899-5362(03)00014-9.
Özdemir, Y., and Güleç, N., 2014. Geological andGeochemical Evolution of the QuaternarySüphan Stratovolcano, EasternAnatolia,Turkey: Evidence for the Lithosphere- Asthenosphere Interaction in Post-Collisional Volcanism,Journal of Petrology, 55(1), 37–62, https://doi.org/10.1093/petrology/egt060.
Pearce, J. A., 1983. Role of the subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C. J., Norry, N. J. (Eds.), Continental Basaltsand Mantle Xenoliths. Shiva, Cheshire, UK, 230-249.
Pearce, J.A., Harris, N.W., and Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956.
Pearce, J.A., and Parkinson, I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard, H.M., Albaster, T., Harris, N.B.W., Neary, C.R. (Eds.), Magmatic Processes in Plate Tectonics, Geological Society of London, 76, 373-403, https://doi.org/10.1144/GSL.SP.1993.076.01.19.
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust.Lithos, 100, 14-48, https://doi.org/10.1016/j.lithos.2007.06.016.
Peccerillo, A., and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey.Contributions to Mineralogy and Petrology, 58, 63-81, https://doi.org/10.1007/BF00384745.
Reagan, M.K., and Gill, J.B., 1989. Coexisting calcalkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source.Journal of Geophysical Research, 94, 4619-4633, https://doi.org/10.1029/JB094iB04p04619.
Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation. Singapore. Longman Singapore Publishers Ltd., 1-351, https://doi.org/10.4324/9781315845548.
Rudnick, R.L., and Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective, Reviews of geophysics, 33, 267-309, https://doi.org/10.1029/95RG01302.
Rudnick, R.L., and Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L., (Eds.), The crust, treatise in geochemistry, ElsevierPergamon, Oxford, 3, 1. http://dx.doi.org/10.1016/b0-08-043751-6/03016-4.
Saunders, A.D., Tarney, J., and Weaver S.D., 1980. Transverse geochemical variations across the Antarctic Peninsula: implication for the genesis of calc-alkaline magmas, Earth and Planetary Science Letters, 46, 344-360, https://doi.org/10.1016/0012-821X(80)90050-3.
Sepidbar, F., Mirnejad, H., Li,J.W., Wei, C., George, L.L., and Burlinson, K., 2017. Mineral geochemistry of the Sangan skarn deposit, NE Iran: implication for the evolution of hydrothermal fluid, Geochemistry, 77(3), 399-419, https://doi.org/10.1016/j.chemer.2017.07.008.
Sepidbar, F., Mirnejad, H., Ma, C. and Moghadam, H. S. 2018. Identification of Eocene-Oligocene magmatic pulses associated with flare-up in east Iran: Timing and sources. Gondwana Research, 57, 141-156.‏ https://doi.org/10.1016/j.gr.2018.01.008.
Shand, S.J., 1943. Eruptive rocks.2nd edition, John Wiley and Sons, New York, US, 1-444.
Shaw, D. M., 1970. Trace element fractionation during anataxis. Geochimica et Cosmochimica Acta, 34(2): 237–243. https://doi.org/10.1016/0016-7037(70)90009-8.
Sun, S.S., and McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalt: implication formantle composition and processes. In: Saunders, A.D. and Norry, M.J. (Eds) Magmatism in the Ocean Basins. Journal of Geological Society, London, 42, 313-345, https://doi.org/10.1144/GSL.SP.1989.042.01.19.
Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, Journal of Petrology, 39(1), 29-60, ‏https://doi.org/10.1093/petroj/39.1.29.
Wang, K., Plank, T., Walker, J.D., and Smith, E.I., 2002. A mantle melting profile across the Basin and Range, SW USA, Journal of Geophysical Research: Solid Earth, 107: 5–21, https://doi.org/10.1029/2001JB000209.
Weaver, B.L., and Tarney, J., 1984.Empirical approach to estimating the composition of the continental crust,Nature, 310, 575-577, https://doi.org/10.1038/310575a0.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals,American Mineralogist, 95(1), 185-187, https://doi: 10.2138/am.2010.3371.
Wilson, M., 1989. Igneous petrogenesis: A global tectonic approach.Unwin Hyman, London, 466p.
Zhao, Z.F., Zheng, Y.F., Wei, C.S., and Wu, Y.B., 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust, Lithos, 93, 248-272, https://doi.org/10.1016/j. lithos.2006.03.067.