Document Type : Original Research Paper


1 Earth Sciences Department, Technical Engineering faculty, Mahallat Branch, Islamic Azad University, Mahallat, Iran

2 Soil Conservation and Watershed Management Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, Khoram Abad, Iran

3 Department of Geology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran


The Barzavand copper deposit with Oligocene age located in 30 Km northeast of Zefreh along a tension fault with W-E trend and developed within basaltic lava with stratabound form. Alterations mainly include: pyritization, propylitization, zeolitization, silicification, saussuritization and uralitization of basaltic lava. Furthermore geochemical studies in Barzavand show enrichment of SiO2, Al2O3, K2O, Na2O, P2O5, TiO2, ∑REE, Ag, As, Ba, Be, Bi, Cd, Cs, Cu, Li, Mo, Nb, Pb, Rb, Sb, Se, Sn, Sr, Ta, Tl, Te, Th, U, W, Y, Zn and Zr, enrichment- depletion of CaO, Fe2O3, MnO, Hf, Sc and V and depletion of S, Ni, Cr, MgO and Co during alteration. The positive correlation between (La/Lu)N, (La/Yb)N, (La/Sm)N and (La/Y)N and CaO (r= 0.70 to 0.96) indicate propylitization of host rock basalt and increase in pH of fluid responsible for mineralization that play important role in differentiation of lanthanides in study area. Ore minerals include chalcopyrite, bornite, covellite, azurite, malachite, hematite, goethite and pyrite. Copper is transported by means of chloride complexes into oxidized brines water related to late diagenesis stage and precipitated by substitution within pyrites formed during the volcanism process. It seems that the Barzavand copper deposit has submarine volcanism, early and late diagenesis, burial metamorphism and weathering stages during its evolution. According to alteration properties, mineralogy and the whole rock geochemistry, the Barzavand copper deposit is most similar to Manto type copper deposits. 


Main Subjects

Arslan, M., Kadir, S., Abdioglu, E., and Kolayli, H., 2006. Origin and formation of kaolin minerals in Saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey, Clay Minerals, 41: 597-617. DOI:10.1180/0009855064120208.
Babazadeh, Sh., Ghalamghash, J., D’Antonio, M., and Furman, T., 2021. Hydrothermal alteration in Eshtehard volcanoes, Iran: Constraints from trace elements redistribution and stable isotope geochemistry. Journal of Geochemical Exploration, 222:106719. DOI: 10.1016/j.gexplo.2020.106719.
Beygi, S., Nadimi, A., and Safaei, H., 2016. Tectonics history of Seismogenic fault structures in Central Iran. Journal of Geosciences, 61 (2): 127–144. 
DOI: 10.3190/jgeosci.212. 
Boveiri, M., Rastad, E., and Rashidnejad, N., 2011. Volcanic redbed- type copper mineralization in the Keshtmahaki, Southern Sanandaj- Sirjan Zone, southeastern Iran, 11th SGA Biennial Meeting Let's Talk Ore Deposits 26–29th September 2011 Antofagasta, Chile.
Boveiri, M., Rastad, E., Kojima, S., and Rashidnejad, N., 2013. Volcanic redbed- type copper mineralization in the Lower  Cretaceous volcano-sedimentary sequence of the Keshtmahaki deposit, southern Sanandaj- Sirjan Zone, Iran. N. Jb. Miner. Abh. (J. Min. Geochem.), 107–121. DOI: 10.1127/0077-7757/2013/0236.
Craveiro, G. S., Xavier, R. P., and Villas, R. N. N., 2019. The Cristalino IOCG deposit: an example of multi-stage events of hydrothermal alteration and copper mineralization. Brazilian Journal of Geology, 49(1). DOI: 10.1590/2317-4889201920180015.
Huang, X. W., Boutroy, É., Makvandi, S., Beaudoin, G., Corriveau, L.,  and De Toni, A. F., 2019. Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes. Mineralium Deposita, 54(4): 525-552. DOI: 10.1007/s00126-018-0825-1.
Kirkham, R. V., 1996. Volcanic Red Bed copper. In: Geology of Canadian Mineral Deposit Types, (ed.) Eckstrand, O. R., Sinclair, W. D. and Thorpe, R. I., Geological Survey of Canada, 8: 241- 252. DOI: 10.4095/207946.
Kojima, S., Trista-Aguilera, D., and Hayashi, K., 2009. Genetic Aspects of the Manto-type Copper Deposits Based on Geochemical Studies of North Chilean Deposits. Resource Geology, 59(1): 87–98. DOI: 10.1111/j.1751-3928.2008.00081.x
Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralalogists, 68.
Laufer, F., Yariv, S., and Steinberg, M., 1984. The adsorption of quadrivalent Cerium by Kaolinite, Clay Minerals, 19: 137-149. DOI: 10.1180/claymin.1984.019.2.02.
Maghfouri, S., Hosseinzadeh, M. R., Moayyed, M., Movahednia, M., and Choulet, F., 2017. Geology, mineralization and sulfur isotopes geochemistry of the Mari Cu (Ag) Manto- type deposit, northern Zanjan, Iran. Ore Geology Reviews, 81: 10–22. DOI:10.1016/j.oregeorev.2016.10.025.
Maksaev, V., and Zentilli, M., 2002. Chilean strata- bound Cu-(Ag) deposits: An overview. In: Porter, T.M. (Ed), Hydrothrmal Iron Oxide in Copper- Gold and related deposits. A Global Perspective. PGC Publishing Adelaide, 163- 184.
Niu, S. D., Guo, J., Xing, G. F., Huang, Z. Q., Wu, H. Y., and Fan, F. P., 2020. Magmatism, geological setting, alteration, and metallogenic potential of Donghua area, Dehua County, Fujian Province, Southeast China: Insights from porphyry zircon U-Pb and pyrite Rb-Sr geochronology, geochemistry and remote sensing. Ore Geology Reviews, 126, 103726. DOI: 10.1016/j.oregeorev.2020.103726.
Oliveros, V., Féraud, G., Aguirre, L., Ramírez, L., Fornari, M., Palacios, C., and  Parada, M., 2008. Detailed 40Ar/39Ar dating of geologic events associated with the Mantos Blancos copper deposit, northern Chile. Mineralium Deposita, 43: 281–293. DOI: 10.1007/s00126-007-0146-2.
Patino, L. C., Velbel, M. A., Price, J. R. and Wade, J. A., 2003- Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala, Chemical Geology, 202: 343-364. DOI: 10.1016/j.chemgeo.2003.01.002.
Pearce, J. A., and Norry, M. J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33-47. DOI: 10.1007/BF00375192.
Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation. DOI:  
Salvi, S., and Williams-Jones, A. E., 1996. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Acta Geochimica et Cosmochimica, 60(11), 1917-1932. DOI: 10.1016/0016-7037(96)00071-3.
Sun, S. S., and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes, 
In: Saunders, A.D., and Norry, M.J., eds. Magmatism in the ocean basin, Geological Society of London Special Publication, 42: 313-345. DOI: 10.1144/GSL.SP.1989.042.01.19.
Tassongwa, B., Eba, F., Njoya, D., Tchakounté, J. N., Jeudong, N., Nkoumbou, C., and Njopwouo, D., 2017. Physico-chemistry and geochemistry of Balengou clay deposit (West Cameroon) with inference to an argillic hydrothermal alteration. Comptes Rendus Geoscience, 5: 212-222. 
DOI: 10.1016/j.crte.2017.06.002. 
Wilson, N. S. F., 2000. Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile. Int. J. Coal Geol, 43: 53–82. DOI: 10.1016/S0166-5162 (99) 00054-3.
Wilson, N. S. F., and Zentilli, M., 2006. Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, Central Chile: International Journal of Coal geology, v. 65, p. 158-169. DOI: 10.1016/j.coal.2005.04.012.
Winchester, J. A., and Floyd, P. A., 1977. Geochemical discrimination of different magma series and their diferentiation products using immobile elements. Chemical Geology, 20: 325–343. DOI: 10.1016/0009-2541(77)90057-2.
Xiao, B., Chen, H., Hollings, P., Wang, Y., Yang, J., and Wang, F., 2018. Element transport and enrichment during propylitic alteration in Paleozoic porphyry Cu mineralization systems: insights from chlorite chemistry. Ore Geology Reviews, 102: 437-448. DOI: 10.1016/j.oregeorev.2018.09.020.
Zhou, Y., Li, L., Yang, K., Xing, G., Xiao, W., Zhang, H., Xiu, L., Yao, Z., and Xie, Z., 2020. Hydrothermal alteration characteristics of the Chating Cu-Au deposit in Xuancheng City, Anhui Province, China: Significance of sericite alteration for Cu-Au exploration. Ore Geology Reviews, 127: 103844. DOI: 10.1016/j.oregeorev.2020.103844.