Document Type : Original Research Paper


1 Department of Earth Sciences, Faculty of Natural Science, University of Tabriz, Tabriz, Iran

2 Department of Mining, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran


There are discontinuous outcrops of volcanic rocks in the West Azarbaijan province and in the north of Maku city. These volcanic complex were bimodal and compose of acidic and basic lava and pyroclastic rocks. Mineral chemistry studies show that clinopyroxenes in the studied rocks are diopside. These pyroxenes have a high magnesium number (0.87 to 0.99). Magma series and tectonic determination diagrams show that the basaltic rocks that make up the studied clinopyroxenes have an alkaline nature and were formed in a whitin plate environment. According to geothermobarometry studies, clinopyroxenes were formed at temperature 1100 - 1250 ° C and pressure of 3 - 9 Kbar. The depth for generation of magma was at about 22 kilometers.


Main Subjects

Alavi, M., 1996- Tectonostratigraphic synthesis and structural style of the Alborz mountain system in Northern Iran, Journal of Geodynamics doi: 10.1016/0264-3707(95)00009-7
Aoki, K. I., and Kushiro, I., 1968. Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contributions to Mineralogy and Petrology, 18(4): 326-337,
Bagheri, S., Stamppfli, G. M., 2008. The Anarak, Jandaq and Posht-e- Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications, Tectonophysics 451, 123–155. doi: 10.1016/j.tecto.2007.11.047.
Bardintzeff, J. M., Deniel, C., Guillou, H., Platevoet, B., Télouk, P., and Oun, K. M. 2012. Miocene to recent alkaline volcanism between Al Haruj and Waw an Namous (southern Libya). International Journal of Earth Sciences, 101(4): 1047-1063,‏
Beccaluva, L., Macciotta, G., Piccardo, G. B., and Zeda, O., 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology, 77(3-4): 165-182,‏
Bonechi, B., Perinelli, C., and Gaeta, M., 2020. Clinopyroxene growth rates at high pressure: constraints on magma recharge of the deep reservoir of the Campi Flegrei Volcanic District (south Italy). Bulletin of Volcanology, 82(1): 1-19,‏
Botcharnikov, R.E., Koepke, J., Holtz, F., McCammon, C., Wilke, M., 2005. The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim. Cosmochim. Acta 69: 5071–5085,
Cameron, M., and Papike, J.J., 1981. Structural and chemical variations in pyroxenes. American Mineralogist, 66(1-2): 1-50.
Davis B. T. C.,  and ‎Boyd‎, D.‎R., 1966. The ‎join ‎Mg2Si2O6-CaMgSi2O6 at 30 kilobars pressure and its application to pyroxenes from kimberlites. J Geophys Res., 71: 3567-3576,
Derakhshi, M., Ghasemi, H., 2013. Soltan Maidan Complex (SMC) in the eastern Alborz structural zone, northern Iran: Magmatic evidence for Paleotethys development. Arabian Journal of Geoscience 6(11). Doi 10.1007/s12517-013-1180-2.
Derakhshi, M., Ghasemi, H., Laicheng, M., 2017.  Geochemistry and petrogenesis of Soltan Maidan basalts (E Alborz, Iran): Implications for asthenosphere-lithosphere interaction and rifting along the N margin of Gondwana. Journal of Chemie der Erde.
Dobosi, G., and Fodor, F.V. 1992. Magma fractionation, replenishment, and mixing as inferred from green core clinopyroxenes in Pliocene basanite, Southern Slovakia. Lithos, 28: 133-150,
Droop, G. T. R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical magazine, 51(361): 431-435, doi:10.1180/minmag.1987.051.361.10.
France, L., Ildefonse, B., Koepke, J., and Bech, F., 2010. A new method to estimate the oxidation state of basaltic series from microprobe analyses. Journal of Volcanology and Geothermal Research, 189(3): 340-346,
Gill, R., 2010. Igneous rocks and processes a practical guide" Department of Earth Sciences Royal Holloway University of London, 472 p, ISBN 978-0-632-06377-2.
Kilinc, A., Carmichael, I.S.E., Rivers, M.L., Sack, R.O., 1983. The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib. Mineral. Petrol. 83: 136–140,
Kress, V.C., and Carmichael, I.S.E., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108: 82–92,
Kushiro, I., 1960. Si-Al relation in clinopyroxenes from igneous rocks. American journal of science, 258(8): 548-554,‏
Le Bas, M. J., 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267-288, DOI:
Leterrier, J., Maury, R. C., Thonon, P., Girard D., and Marchal., M., 1982. Clinopyroxene compositions as a method of identification of magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters 59, 139-154,
Melluso, L., and Sethna, S. F., 2011. Mineral compositions in the Deccan igneous rocks of India: an overview. Topics in igneous petrology, 135-159, DOI: 10.1007/978-90-481-9600-5_7
Moretti, R., 2005. Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Annals of Geophysics,
Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., and Gottardi, G., 1988. Nomenculature of pyroxenes. American Mineralogist, 73: 1123-1133,
Nimis, P., and Taylor, W.R., 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometrer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology, 139: 541–554,
Nisbet, E. G., and Pearce, J. A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to mineralogy and petrology, 63(2): 149-160,‏
Papike, J. J., Cameron, K. L., and Baldwin, K., 1974. Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. In Geological Society of America, Abstracts with Programs, 6: 1053-1054, ID (NAID): 10026533544
Poldervaart, A., and Hess, H. H., 1951. Pyroxenes in the crystallization of basaltic magma.The Journal of Geology, 472-489,
Putirka, K., Johnson, M., Kinzler, R., Longhi, J., and Walker, D., 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 Kbar. Contributions to Mineralogy and Petrology, 123(1): 92-108,‏
Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and Snake River Plain, Idaho. American Mineralogist, 88: 1542–1554,
Putrika, K.D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69: 61-120,
Rock, N. M. S., 1990. The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: computerization and its consequences. Mineralogy and Petrology, 43(2): 99-119,
Schweitzer, E.L., Papike, J.J., and bence, A.E., 1979. Statitical analysis of clinopyroxenes from deep- sea basalts. American Mineralogist, 64: 501-513,
Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallization PT-estimations. GFF, 119(1): 55-60,
Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7): 1229-1258,
Tracy, R. J., and Robinson, P., 1977. Zoned titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. American Mineralogist, 62(7-8): 634-645.‏
Wass, S. Y., 1979. Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos, 12(2): 115-132,
Whitney, D. L., and Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185-187.