Document Type : Original Research Paper

Authors

1 School of Geology, College of Science, University of Tehran, Tehran, Iran

2 Department of Physics and Earth Sciences, University of the Ryukyus, Okinawa, Japan

3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada

4 Institute of Mineralogy and Mineral Resources, Technical University of Clausthal, Clausthal-Zellerfeld, Germany

Abstract

Sr-Nd-Pb isotopes and whole-rock geochemical analyses were carried out on plutonic rocks of the Chadormalu district to constrain the magmatic history of the Cadomian orogeny of the northern Gondwana margin during Late Precambrian–Early Paleozoic times. Despite the similarities in the geochemical data, i.e., calc-alkaline affinity, enrichment in large ion lithophile elements (e.g., Rb, Ba, K, and Cs), and depletion in high field strength elements, e.g., Nb, Ta, P, Ti, and rare earth element patterns, bulk rock Sr-Nd isotope data rull out the co-magmatic nature of investigated basic (gabbro) and felsic (granite) magmas. Sr-Nd isotopic data (e.g., ɛNd(t)= -3.6 to +1.8) along with rather high (207Pb/206Pb)t attest to the crust-dominant, and mantle-derived melts for the granitoids and gabbros, respectively. The investigated zircons yielded the older ages for the gabbroic samples. The extensional tectonic regime is followed by slab retreat or delamination brought flare-up of the oldest arc-related igneous rocks and interacted with Cadomian basement to form the investigated granitoid melts. The gabbroic rocks show geochemical and isotopic disruption and elevation of L-MREE/HREE ratios on the chondrite-normalized rare earth element (REE) patterns; interpreting the evidences of mantle heterogeneity and interaction with Paleoproterozoic basement.

Keywords

Main Subjects

Aftabi, A., Mohseni, S., Babeki, A., and Azaraien, H., 2009. Fluid inclusion and stable isotope study of the esfordi apatite-magnetite deposit, central, IRAN-A discussion. Economic geology, 104(1), pp.137-139. https://doi.org/10.1016/j.chemgeo.2012.09.041.
Bagherzadeh, R.M., Karimpour, M.H., Farmer, G.L., Stern, C.R., Santos, J.F., Rahimi, B., and Heidarian Shahri, M.R., 2015. U–Pb zircon geochronology, petrochemical and Sr–Nd isotopic characteristic of Late Neoproterozoic granitoid of the Bornaward Complex (Bardaskan-NE Iran). Journal of Asian Earth Sciences 111, 54–71. https://doi.org/10.1016/j.jseaes.2015.05.019.
Baier, J., Audetat, A., and Keppler, H., 2008- The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters 267, 290–300. https://doi.org/10.1016/j.epsl.2007.11.032.
Berberian, M., and King, G.C.P., 1981. Toward a paleogeography and tectonic evolution of Iran, Can. J. Earth Sie V. 18, No. 2. Pp. 210-265. 
Beyarslan, M., Lin, Y.C., Bingol, A.F., and Chung, S.L., 2016. Zircon U-Pb age and geochemical constraints on the origin and tectonic implication of Cadomian (Ediacaran-Early Cambrian) magmatism in SE Turkey. Journal of Asian Earth Sciences 130, 223–238. https://doi.org/10.1016/j.jseaes.2016.08.006.
Borumandi, H., 1973. Petrograpische und Lagerst Attenkundliche Untersuchungen der Esfordi-Formation Zwischen Mishdovan und Kushk bei Yazd/Zentral Iran, Unpublished Ph.D. thesis. University of Aachen, Germany.
Chaharlang, R., and Ghorbani, M.R., 2020. A hidden crust beneath the central Urumieh-Dokhtar Magmatic Arc revealed by inherited zircon ages, Tafresh, Iran: Geological Journal 55, 3770-3781. https://doi.org/10.1002/gj.3631.
Chappell, B.W., Bryant, C.J., Wyborn, D., White, A.J.R., and Williams, I.S., 1998. High and low temperature I-type granites. Resource Geology, 48(4), pp.225-235.
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Melkonyan, R., Pang, K.N., Lee, H.Y., Wang, K.L., Mohammadi, S.S., and Khatib, M.M., 2017. Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt. Journal of Asian Earth Sciences 145, 652-669. https://doi.org/10.1016/j.jseaes.2017.06.011.
Daniel, C., and Pin, C., 2001. Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Analytica Chimica Acta 426(1), 95-103. https://doi.org/10.1016/S0003-2670(00)01185-5.
Duggen, S., Hoernle, K., van den Bogaard, P., and Garbe-Schönberg, D., 2005. Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere: Journal of Petrology, 46, 1155–1201. https://doi.org/10.1093/petrology/egi013.
Förster, H., and Jafarzadeh, A., 1994. The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field. Economic Geology, 89(8), 1697-1721.
Furman, T., and Graham. D., 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos 48, 237-262. https://doi.org/10.1016/S0024-4937(99)00031-6.
Haghipour, A., and Pelissier, G., 1977. Geological map of the Biabanak-Bafq area. Geological Survey of Iran.
Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K., and Walker, J.D., 2008. U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics, 451(1-4), pp.71-96.
Hawkesworth, C., Kelley, S., Turner, S., Le Roex, A., and Storey, B., 1999. Mantle processes during Gondwana break-up and dispersal. Journal of African Earth Sciences, 28(1), pp.239-261. https://doi.org/10.1016/S0899-5362(99)00026-3.
Heidarian, H., Alirezaei, S., and Lentz, D.R., 2017. Chadormalu Kiruna-type magnetite-apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geology Reviews, 83, pp.43-62.
Heidarian, H., Lentz, D.R., Alirezaei, S., McFarlane, C.R., and Peighambari, S., 2018. Multiple stage ore formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE imaging and apatite EPMA and LA-ICP-MS U-Pb geochronology. Minerals, 8(3), p.87.
Honarmand, M., Li, X.H., Nabatian, G., Rezaeian, M., and Etemad-Saeed, N., 2016. Neoproterozoic-Early Cambrian tectono-magmatic evolution of the Central Iranian terrane, northern margin of Gondwana: Constraints from detrital zircon U-Pb and Hf-O isotope studies. Gondwana Research 37, 285-300. https://doi.org/10.1016/j.gr.2016.05.007.
Honarmand, M., Xiao, W., Nabatian, G., Blades, M.L., dos Santos, M.C., Collins, A.S., and Ao, S., 2018. Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and Sr-Nd-Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: Implications for Ediacaran active continental margin along the northern Gondwana and constraints on the late Oligocene crustal anatexis. Gondwana Research 57, 48–76. https://doi.org/10.1016/j.gr.2017.12.009.
Huang, K.F., Blusztajn, J., Oppo, D.W., Curry, W.B., and Peucker-Ehrenbrink, B., 2012. High-precision and accurate determination of neodymium isotopic compositions at nanogram levels in natural materials by MC-ICP-MS. J. Anal. At. Spectrom. 27, 1560–1567. https://doi.org/10.1039/C2JA30123G.
Jami, M., 2005. Geology, Geochemistry and Evolution of the Esfordi Phosphate - Iron Deposit, Bafq Area, Central Iran. NSW University, Ph.D. thesis, 328 P.
Kepezhinskas, P., McDermott, F., Defant, M., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R.C., and Bellon, H., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta 61 (3), 577-600. https://doi.org/10.1016/S0016-7037(96)00349-3.
Middlemost, E.A., 1994. Naming materials in the magma/igneous rock system. Earth-science reviews, 37(3-4), pp.215-224.
Mokhtari, M.A.A., Zadeh, G.H., and Emami, M.H., 2013. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of earth system science, 122(3), pp.795-807. https://doi.org/10.1007/s12040-013-0313-z.
Moore, F., and Modabberi, S., 2003. Origin of Choghart iron oxide deposit, Bafq mining district, Central Iran: new isotopic and geochemical evidence. Journal of Sciences Islamic Republic of Iran, 14(3), 259-270.
Morata, D., Oliva, C., de la Cruz, R., and Suarez, M., 2005. The Bandurrias gabbro; late Oligocene alkaline magmatism in the Patagonian cordillera. J. S. Am. Earth Sci. 18, 147–162. https://doi.org/10.1016/j.jsames.2004.09.001.
Moritz, R., Rezeau, H., Ovtcharova, M., Tayan, R., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M., and Putlitz, B., 2016- Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Research 37, 465–503. http://dx.doi.org/10.1016/j.gr.2015.10.009.
Nayebi, N., Esmaeily, D., Chew, D.M., Lehmann, B., and Modabberi, S., 2021. Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit. Ore Geology Reviews, 132, p.104054.
Nutman A.P, Mohajjel, M., Bennett, V.C., and Fergusson, C.L., 2014. Gondwanan Eoarchean-Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence. Canadian Journal of Earth Science 51, 272-285. https://doi.org/10.1139/cjes-2013-0138.
Pearce, J.A., and Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Science Letters 23, 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343.
Pearce, T. H., 1984. The analysis of zoning in magmatic crystals with emphasis on olivine. Contribution to Mineralogy and Petrology 86 (2), 149–154. https://doi.org/10.1007/BF00381841.
Peters, S.T., Alibabaie, N., Pack, A., McKibbin, S.J., Raeisi, D., Nayebi, N., Torab, F., Ireland, T., and Lehmann, B., 2020. Triple oxygen isotope variations in magnetite from iron-oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks. Geology, 48(3), pp.211-215. https://doi.org/10.1130/G47858Y.1.
Pin, C., Briot, D., Bassin, C., and Poitrasson, F., 1994. Concomitant separation of strontium and sumarium neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta 298, 209–217. https://doi.org/10.1016/0003-2670(94)00274-6.
Ramezani, J., 1997. Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand area, Central Iran. Washington University in St. Louis.
Ramezani, J., and Tucker, R.D., 2003. The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303, 622–665. http://dx.doi.org/10.2475/ajs.303.7.622.
Rudnick, R.L., and Gao, S., 2003. Composition of the continental crust. In The Crust (3) (ed. R. L. Rudnick), 1-64. https://doi.org/10.1016/0016-7037(95)00038-2.
Sahandi, M., Baumgartner, S., and Schmidt, K.T., 1984. Contributions to the stratigraphy and tectonics of the Zeber-Kuh range (east Iran). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, pp.345-357. DOI: 10.1127/njgpa/168/1984/345.
Scher, H. D., and Delaney, M. L., 2010. Nd isotope composition of fossil fish teeth of ODP Hole 119-738B. PANGAEA, https://doi.org/10.1594/PANGAEA.780523.
Sepidbar, F., Moghadama, H.S., Li, C, Stern, R.J., Jiantang, P., and Vesali, Y., 2020. Cadomian Magmatic Rocks from Zarand (SE Iran) Formed in a Retro-Arc Basin. Lithos 366–367. 105569. https://doi.org/10.1016/j.lithos.2020.105569.
Shafaii Moghadam, H., Li, X.H., Ling, X.X., Santos, J.F., Stern, R.J., Li, Q.L., and Ghorbani, G., 2015. Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos, 216, pp.118-135. https://doi.org/10.1016/j.lithos.2014.12.012.
Shand, S.J., 1943. Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. J. Wiley & sons, Incorporated.
Shinjo, R., Ginoza, Y., and Meshesha, D., 2010. Improved method of Hf separation from silicate rocks for isotopic analysis using the Ln–spec resin column. Journal of Mineralogical and Petrological Sciences 105, 297–302. https://doi.org/10.2465/jmps.091011.
Stampfli, G.M., Hochard, C., Vérard, C., Wilhem, C., and Von Raumer, J.V., 2013. The formation of Pangea: Tectonophysics, 593, 1–19. https://doi.org/10.1016/j.tecto.2013.02.037.
Sun, S.S., and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society (London) 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
Thirlwall, A.P., 1994. Growth And Development: With Special Reference To Developing: with Special Reference to Developing Economies. Macmillan International Higher Education. 
Torab, F. M., 2008. Geochemistry and Metallogeny of Magnetite Apatite Deposits of the Bafq Mining District, Central Iran. Univ.-Bibliothek.
Torab, F.M., and Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine 71, 347–363.
Vesali, Y., Sepidbar, F., Palin, R.M., and Chiaradia, M., 2021. Crustal architecture studies in the Iranian Cadomian arc: Insights into source, timing and metallogeny. Ore Geology Reviews, p.104280. https://doi:10.1016/j.oregeorev.2021.104280.
Waight, T.E., Weaver, S.D., Muir, R.J., Maas, R., and Eby, G.N., 1998. The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition. Contributions to Mineralogy and Petrology, 130(3-4), pp.225-239. https://doi.org/10.1007/s004100050362.
Watson, E.B., 1979. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70(4), pp.407-419.
White, A.J.R., and Chappell, B.W., 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In: Roddick, J. A. (ed.) Circum-Pacific Plutonic Terranes. Geological Society of America, Memoir, 159, 21-34. https://doi.org/10.1130/MEM159-p21.
Williams, G.J., and Houshmand Zadeh, A., 1966. A petrological and genetic study of the Choghart iron ore body and the surrounding rocks. Geological Survey of Iran, 18p.
Zen, E.A., 1986. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and  petrographic constraints. Journal of Petrology, 27(5),1095-1117. https://doi.org/10.1093/petrology/27.5.1095.