Document Type : Original Research Paper

Authors

Earth Physics Department, Institute of Geophysics, University of Tehran, Tehran, Iran

Abstract

Inversion modeling of Vertical Electrical Sounding (VES) data is formulated as a nonlinear problem and solved using multiple depth layers of fixed boundary and a few depth layers of the variable boundary. The model parameters in Smooth inversion are only the resistivity values. However, in the block inversion, the thickness of each layer is also added to the model parameters. Due to the non-linearity of the inverse problem, the determination of an appropriate initial model is very significant. A technique has been adopted to estimate a proper starting model for the block inversion strategy. Thus, from the solution of the smooth inversion, the second derivative of cumulative resistivity is calculated, then using the difference of turning points, the initial values of the model parameters are determined. The proposed algorithms are first tested on data derived from two artificial models and then implemented on two real data sets. The numerical experiments demonstrate that the smooth inversion of the geo-electrical sounding data due to less dependency on the initial model confronts fewer challenges proportional to the block inversion strategy. However, in the case of block inversion, an appropriate choice of the initial model makes it possible to determine the boundaries of the layers with more certainty.

Keywords

Main Subjects

Adabanija, M.A., Omidiora, E.O., and Olayinka, A.I., 2008. Fuzzy logic modeling of the resistivity parameter and topography features for aquifer assessment in hydrogeological investigation of a crystalline basement complex. Hydrogeology Journal, 16(3), 461-481.
Akca, İ., Günther, T., Müller-Petke, M., Başokur, A.T., and Yaramanci, U., 2014. Joint parameter estimation from magnetic resonance and vertical electric soundings using a multi-objective genetic algorithm. Geophysical Prospecting, 62(2), 364-376. https:// doi.10.1111/1365-2478.12082.
Aster, R.C., Borchers, B., and Thurber, C.H., 2018. Parameter estimation and inverse problems. Elsevier. 315 p.
Benning, M., and Burger, M., 2018. Modern regularization methods for inverse problems. Acta Numerica, 27, 1-111. https:// doi.10.1017/S0962492918000016.
Faridi, R. and Ghanati, R., 2020. Nonlinear Unconstrained Inversion of Geomagnetic Data Using Sub-Problem Trust-Region Algorithm. Iranian Journal of Geophysics, 14(3), pp.85-103.
Ghanati, R., and Müller-Petke, M., 2021. A homotopy continuation inversion of geoelectrical sounding data. Journal of Applied Geophysics, 191, 104356. https://doi.org/10.1016/j.jappgeo.2021.104356.
Ghanati, R., Hafizi, M.K., Mahmoudvand, R., and Fallahsafari, M., 2016. Filtering and parameter estimation of surface-NMR data using singular spectrum analysis. Journal of Applied Geophysics, 130, 118-130. https://doi.org/10.1016/j.jappgeo.2016.04.005.
Ghosh, D.P., 1971. Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth. Geophysical prospecting, 19(4), 769-775. https://doi.org/10.1111/j.1365-2478.1971.tb00915.x.
Grodzevich, O., and Wolkowicz, H., 2009. Regularization using a parameterized trust region subproblem. Mathematical Programming, 116(1), 193-220.
Günther, T., and Müller-Petke, M., 2012. Hydraulic properties at the North Sea island of Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings. Hydrology and Earth System Sciences, 16(9), 3279-3291. https://doi.org/10.5194/hess-16-3279-2012.
Juanatey, M., 2007. Joint inversion of Direct Current (DC) and Radio-magnetotelluric (RMT) data, PhD thesis, Uppsala University, Sweden, 105 p.
Kumar, D., Ahmed, S., Krishnamurthy, N.S., and Dewandel, B., 2007. Reducing ambiguities in vertical electrical sounding interpretations: A geostatistical application. Journal of Applied Geophysics, 62(1), 16-32. https:// doi.10.1016/j.jappgeo.2006.07.001.
Maiti, S., Gupta, G., Erram, V.C., and Tiwari, R.K., 2011. Inversion of Schlumberger resistivity sounding data from the critically dynamic Koyna region using the Hybrid Monte Carlo-based neural network approach. Nonlinear Processes in Geophysics, 18(2), 179-192. https://doi.org/10.5194/npg-18-179-2011.
Maiti, S., Erram, V.C., Gupta, G., and Tiwari, R.K., 2012. ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). Journal of Hydrology, 464, 294-308. https:// doi.10.1016/j.jhydrol.2012.07.020.
Malinverno, A., 2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151(3), 675-688.
Muiuane, E.A., and Pedersen, L.B., 2001. 1D inversion of DC resistivity data using a quality-based truncated SVD. Geophysical prospecting, 49(4), 387-394. https://doi.org/10.1046/j.1365-2478.2001.00264.x.
Nocedal, J. and Wright, S.J. eds., 1999. Numerical optimization. New York, NY: Springer New York. 
Nosakare Ogunbo, J., 2018. MATLAB code for data-driven initial model of 1D Schlumberger sounding curve. Geophysics, 83(2), F21-F28. https://doi.org/10.1190/geo2016-0631.1.
Parasnis, D.S., 2012. Principles of applied geophysics. Springer Science & Business Media. 301 p.
Piatti, C., Boiero, D., Godio, A., and Socco, L.V., 2010. Improved Monte Carlo 1D inversion of vertical electrical sounding and time-domain electromagnetic data. Near Surface Geophysics, 8(2), 117-133. https://doi.org/10.3997/1873-0604.2009055.
Scales, J.A., and Tenorio, L., 2001. Prior information and uncertainty in inverse problems. Geophysics, 66(2), 389-397. https://doi.org/10.1190/1.1444930.
Schott, J.J., Roussignol, M., Menvielle, M., and Nomenjahanary, F.R., 1999. Bayesian inversion with Markov chains-II. The one-dimensional DC multilayer case. Geophysical Journal International, 138(3), 769-783. https://doi.org/10.1046/j.1365-246x.1999.00905.x.
Sharma, S.P., and Kaikkonen, P., 1999. Appraisal of equivalence and suppression problems in 1D EM and DC measurements using global optimization and joint inversion. Geophysical prospecting, 47(2), 219-249. https://doi.org/10.1046/j.1365-2478.1999.00121.x.
Snieder, R., 1998. The role of nonlinearity in inverse problems. Inverse problems, 14(3), 387 p.
Awad Sultan, S., and Monteiro Santos, F.A., 2008. 1D and 3D resistivity inversions for geotechnical investigation. Journal of Geophysics and Engineering, 5(1), 1-11. https://doi.org/10.1088/1742-2132/5/1/001.
Wang, Y., and Yuan, Y., 2005. Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems. Inverse problems, 21(3), 821 p. https://doi.org/10.1088/0266-5611/21/3/003.
Watzenig, D., 2007. Bayesian inference for inverse problems–statistical inversion. Elektrotech. Inftech, 124(7), 240-247. https://doi.org/10.1007/s00502-007-0449-0.
Ou, Y., Zhou, Q., and Lin, H., 2009. An ODE-based trust region method for unconstrained optimization problems. Journal of Computational and Applied mathematics, 232(2), 318-326. https://doi.org/10.1016/j.cam.2009.06.012.
Zhang, H., Li, X., Song, H., and Liu, S., 2015. An adaptive subspace trust-region method for frequency-domain seismic full waveform inversion. Computers & Geosciences, 78, 1-14. https://doi.org/10.1016/j.cageo.2015.02.007.