Document Type : Original Research Paper


Department of Geology, Faculty of Geosciences, Shahrood University of Technology, Shahrood, Iran


Sargaz-Abshur (Sikhoran) ultramafic-mafic complex, which is situated in Esfandagheh area, SE Sanandaj-Sirjan metamorphic- magmatic zone,  intruded into Upper Paleozoic- Triassic metamorphic rocks and covered by Jurassic sedimentary rocks. This complex consists of harzburgite and porphyroclastic dunites of the residual mantle (tectonites), layered ultramafic-mafic cumulates, large isotropic gabbro intrusion and scattered microgabbroic to diabasic dykes. It does not have extrusive and sedimentary parts of a topical ophiolite sequence (e.g., diabasic swarm dykes, massive and pillow basalts, hyaloclastites, chert, radiolarite and pelagic limestone). The complex is like a large pluton that caused the intensive contact metamorphism of Upper Paleozoic- Triassic rocks through the widespread partial melting of amphibolites, thus it is not an ophiolite sequence. The pluton is mainly comprised of porphyroclastic dunites and layered ultramafic-mafic cumulates. Cr-spinel is enriched or depleted in Cr, having magmatic to residual origins and found in the layered ultramafic (mantle) part of the pluton. The Euhedral Cr-spinel crystalized between olivine grains or as inclusion with massive and layered cumulative textures. It is chromite, magnesiochromite, hercynite in composition, corresponding  to Cr-spinels of depleted peridotites from the supra-subduction zone (SSZ), especially those magmas of SSZ that reacted with boninitic magmas. Detailed field works together with previous and new geochronological  ages of pegmatite veins related to partial melting of host amphibolite show the alpine type Sargaz-Abshour ultramafic-mafic pluton was ascended as a astenospheric mantle diaper in extensional intra/fore-arc basin of the Andyan type of Sanandaj-Sirjan metamorphic- magmatic zone during the Late Triassic-Early Jurassic (187.2 ± 2.6 Ma).


Main Subjects

Abdallah, Sh.E., Ali., Sh., Obeid, M.A., 2019. Geochemistry of an Alaskan-type mafic-ultramafic complex in Eastern Desert, Egypt: New insights and constraints on the Neoproterozoic island arc magmatism. Geoscience Frontiers 10: 941-955.
Ahmadipour, H., Sabzehei, M., Whitechurch, H., Rastad, E., and Emami M. H., 2003. Soghan Complex as an evidence for paleospreading center and mantle diapirism in Sanandaj-Sirjan zone (South-East Iran). Journal of Sciences, Islamic Republic of Iran, 14, 157-172.
Ao, A., and Satyanarayanan, M., 2021. Petrogenesis of mantle peridotite and cumulate peridotite rocks from the Nagaland Ophiolite Complex, NE India. Geological Journal, 1-19. DOI: 10.1002/gj.4314.
Arai, S., 1987. An estimation of the least depleted spinel peridotite on the basis of olivine-spinel mantle array. Neuesfahrbuch fur Mineralogie, Monatshefte 8, 347-354.
Arai, S., 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag, 56, 173-184.
Arai, S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationship: review and interpretation. Chemical Geology, 113, 191-204.
Arai, S., 1997a- Control of wall–rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour. Geol, 47, 177-187.
Arai, S., 1997b. Origin of podiform chromitites. J. Asian Earth Sci, 15(2-3), 303-310. DOI: 10.1016/S0743-9547(97)00015-9.
Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K., and Ishimaru, S., 2011. Chemical characteristics of chromian spinel in plutonic rocks: implication for deep magma processes and discrimination of tectonic setting. Island Arc, 20, 125- 137. DOI: 10.1111/j.1440-1738.2010.00747.x.
Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., and Babaei, A., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences, 30, 474-489. DOI: 10.1016/j.jseaes.2007.01.001.
Barnes, S.J., and Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279-2302.
Baumgartner, RJ., Zaccarini, F., Garuti, G., and Thalhammer, OAR., 2013. Mineralogical and geochemical investigation of layered chromitites from the Bracco-Gabbro complex, Ligurian ophiolite, Italy. Contrib Mineral Petrol, 165, 477-493. DOI: 10.1007/s00410-012-0818-5.
Berberian, M., and King, G.C.P., 1981.Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-265.
Besse J., Torcq F., Gallet Y., Ricou L.E., Krystyn L., and Saidi A., 1998. Late Permian to Late Triassic palaeomagnetic data from Iran: constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophysical Journal International, 135(1), 77-92.
Bonatti, E., and Michael P, J., 1989. Mantle peridotites from continentalrifts to ocean basins to subduction zones. Earth Planet Sci Lett,91,  297-311.
Cawthorn, R.G., 1996. Layered Intrusion. Elsevier, 543p.
Challis, G.A., 1965. High temperature contact metamorphism at the Red Hills ultramafic intrusion, Wairau valley, New Zealand. Journal of Petrology, 6, 395-419.
Charlier, B., Namur, O., Latypov, R., and Tegner, C., (Ed.) 2015. Layered Intrusion. Springer, 749p. DOI:
Dare, S.A.S., Pearce, J.A., McDonald, I., and Styles, M.T., 2009. Tectonic discrimination of  peridotites using fO2-Cr#  and Ga-Ti-FeIII systematic in chrome-spinel. Chemical Geology, 261, 199-216.
Dharma Rao, CV., Santosh, M., Sajeev, K., and Windley, BF., 2013. Chromite-silicate chemistry of the neoarcheansittampundi complex, southern India: implications for subduction-related arc magmatism. Precambrian Res, 227, 259-275. DOI: 10.1016/j.precamres.2011.11.012.
Dick, H.J.B., 1977. Partial melting in the Josephine peridotite I, the effect on mineral composition and its consequence for geobarometry and geothermometry. American Journal of Sciences, 277, 801-832. DOI: 10.2475/ajs.277.7.801.
Dick, H.J.B., and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and  alpine type peridotites and spatially associated lavas. Contributions to Mineralogy and  Petrology, 86, 54-76.
Franz, L., and Wirth, R., 2000. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismark Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contr. Mineral. Petrology, 140, 283-295.
Ghasemi, H., Juteau, T., Bellon, H., Sabzehei, M., Whitechurch, H., and Ricou, L.E., 2002. The mafic-ultramafic Complex of Sikhoran(Central Iran): A polygenetic Ophiolite complex. C.R. Geoscience, 334, 431-438. DOI:  10.1016/S1631-0713(02)01770-4.
Hebert, H., and Laurent, R., 1987. Mineral chemistry of the plutonic section of the Troodos ophiolite: New constraints for genesis of arc-related ophiolites. In Malpas, J.; Moores, E. M.; Panayiotou, A.; Xenophontos. C. (1990)(eds) Ophiolites Oceanic Crustal Analogues:proceeding of the symposium’Troodos. 149-163.
Huang, Y., Wang, L., Kusky, T., Robinson, PT., Peng, SB., Polat, A., and Deng, H., 2017. High-Cr chromites from the late Proterozoic Miaowan Ophiolite Complex, South China: Implications for its tectonic environment of formation. Lithos, 288-289, 35-54.
Irvine, TN., 1965. Chromian spinel as a petrogenetic indicator. Part I. Theory. Can J Earth Sci, 2, 648-672.
Irvine, TN., 1967. Chromian spinel as a petrogenetic indicator. Part II. Petrological applications. Can J Earth Sci 4, 71-103.
Juteau, T., and Maury, R.,1999. The Oceanic Crust,from Accretion to Mantle Recycling. Springer. 390p.
Kamenetsky, V.S., Crawford, A.J., and Meffre, S., 2001. Factors controlling chemistry of  magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt  inclusions from primitive rocks. Journal of Petrology, 42, 655-671.
Lindsley, DH., 1991. Oxide minerals: petrologic and magnetic significance. Rev. in Mineralogy 25, 1-509.
Melcher, F., Grum, W., Thalhammer, T. V., and Stumpfl, F., 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology, 38, 1419-1458.
Middlemost, E. A. K., 1985. Magmas and magmatic rocks:An introduction to igneous petrology. Longman group UK. 266pp.
Mukherjee, R., Monda,l SK., Rosing, MT., and Frei, R., 2010. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contrib Mineral Petrol, 160, 865-885.
Najafzadeh, A. R., Arvin, M., Pan, Y., and Ahmadipour, H., 2008. Podiform Chromitites in the Sorkhband Ultramafic Complex, Southern Iran: Evidence for Ophiolitic Chromitite. Journal of Science (Islamic Republic of Iran), 19, 49-65.
Nixon, P, H., 1987. Mantle Xenoliths. Wiley, New York, N.Y., 844 pp.
Obata, M., 1980. The Ronda Peridotite: Garnet-Spinel and Plagioclase-Lherzolite facies and the P-T trajectories of a high temperature mantle intrusion. Journal of Petrology, 21(3), 533-572.
Pearce,  J.A.,  Vander  Laan,  S.R.,  Arculus,  R.J.,  Murton,  B.J.,  Ishii,  T.,  Peate,  D.W.,  and Parkinson, I.J., 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction, in Fryer, P., et al., Proceeding of the Ocean Drilling Program, Scientific Results, Site 778–786, Bonin-Mariana Region. College Station, Texas, Ocean Drilling Program, 623-659. DOI: 10.2973/
Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J., and Leat, P. T., 2000. Geochemistry and tectonic significance of peridotites from theSouth Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36-53.
Peighambari, S., Ahmadipour. H., Stosch. H-G., and Daliran, F., 2011. Evidence for multi-stage mantle metasomatism at the Dehsheikh peridotite massif and chromite deposits of the Orzuieh coloured mélange belt, southeastern Iran. Ore Geol Rev, 39, 245-264. 10.1016/j.oregeorev.2011.03.004.
Peighambari, S., Uysal, I., Stosch, H. G., Ahmadipour, H., and Heidarian, H., 2016. Genesis and tectonic setting of ophiolitic chromitites from the Dehsheikh ultramafic complex (Kerman, southeastern Iran): Inferences from platinum-group elements and chromite compositions. Ore Geology Reviews, 74, 39- 51.
Quick, J.E., 1981. Petrology and petrogenesis of the Trinity Peridotite. An upper mantle diapir in the Eastern Klamath Mountains. Northern California. Journal of Geophysical Research, 86(B12), 11837-11863.
Sabzehei, M., 1974. Les mélanges ophiolitiques de la region d’Esfandagheh(Iran meridional)Etude petrologique et structurale, Interpretation dans le cadre iranien. These,Universite de Grenoble, 205p.
Saidi, A., Brunet, M.F., and Ricou, L.E., 1997. Continental accretion of the Iran block to Eurasia as seen from Late Paleozoic to Early Cretaceous subsidence curves. Geodyn. Acta, 10, 189-208.
Sepidbar, F., Khedr, M.Z., Ghorbani, M.R., Palin, R.M., and Xiao, Y., 2021. Petrogenesis of arc-related peridotite hosted chromitite deposits in Sikhoran-Soghan mantle section, South Iran: Evidence for proto-forearc spreading to boninitic stages. Ore Geology Reviews, 136, 104-256.
Shafaii Moghadam, H., Bröcker, M., Griffin, W.L., Li, X.H, Chen, R.X., and O’Reilly, S.Y.  2017.  Subduction, high-P metamorphism and collision fingerprints in SW Iran: Constraints from zircon U-Pb and mica Rb-Sr geochronology.  Geochemeistry, Geophysics, Geosystems, 18, 306-332.
Shervais, J. W., 2000. Birth, death, and resurrection: The life cycle of supra subduction zone ophiolites. Geochemistry, Geophysics, Geosystems, v. 2.
Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., and Croudace, I.W., 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, 35, 577-617.
Tamura, A., and Arai, SH., 2006. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90, 43-56.
Uysal, I., Tarkian, M., Sadiklar, M.B., Zaccarini, F., Meisel, T., Garuti, G., and Heidrich, S.,  2009. Petrology of Al-and Cr-rich ophiolitic chromitites from the, SW Turkey:  implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contributions to  Mineralogy and Petrology 158, 659-674.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
Ye., X.T., Zhang, Ch.L., Zou, H.B., Zhou, G., Yao, Ch.Y., and Dong, Y.G., 2015. Devonian Alaskan-type ultramafic–mafic intrusions and silicic igneous rocks along the southern Altai orogen: Implications on the Phanerozoic continental growth of the Altai orogen of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 113: 75-89.
Zaccarini, F., Garuti, G., Proenza, J.A., Campos, L., Thalhammer, O.A.R., Aiglsperger, T.,  and Lewis, J., 2011. Chromite and platinum-group-elements mineralization in the Santa  Elena ophiolitic ultramafic nappe (Costa Rica): geodynamic implications. Geologica  Acta, 9, 407-423. D O I :   1 0 . 1 3 4 4 / 1 0 5 . 0 0 0 0 0 1 6 9 6.
Zhou, M. F., Sun, M., Keays, R.R., and Kerrich, R., 1998. Controls on the platinum-group   elemental distributions in high-Cr and high-Al chromitites: a case study of the  podiform chromitites from the Chinese orogenic belts. Geochimica et Cosmochimica  Acta, 62, 677-688.  10.1016/S0016-7037(97)00382-7.
Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.J., and Qi, L., 2005. REE and PGE  geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 46(3), 615-639.
Zhou, MF., Robinson, PT., Su, BX., Gao, JF., Li, JW., Yang, JS., and Malpas, J., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits. The role of slab contamination of asthenospheric melts in supra subduction zone environments. Gondwana Res, 26, 262-283.