Document Type : Original Research Paper

Authors

Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Investigating the hydrocarbon generation potential of the Kazhdumi Formation, as the most important oil source rock in the Zagros sedimentary basin, is of great importance. The expansion of the Kazhdumi Formation in the Zagros Basin has been associated with differences in sedimentation depth of the basin leading to varieties in sedimentary facies and the organic matter preservations. Five black shale samples from Perchestan and Tang-E Maghar sections were selected for analysis by Rock-Eval pyrolysis, and were compared to the data of 25 Kazhdumi samples from different oil fields of Nowrouz, Soroush, Azadegan and Chah-E Binak, previously studied in the Zagros Basin. Additionally, sedimentary environment and depositional conditions were investigated. Sedimentary and geochemical evidences indicate a dominant condition of high organic content shale deposition in the reducing to semi-oxidative environments. The values obtained for total organic carbon (TOC) ranged from 1.2 to 6.9%. Examination of the thermal maturity of the samples showed a wide range from the immature range to the middle oil window, which are often in the range of type II and III kerogens. Finally, the drawing of the TOC vs. S2 diagram represents the higher hydrocarbon generation potential of the Kazhdumi Formation in the Tang-E Magher section, and the TOC vs. HI diagram shows the greater oil generation in the Soroush field, compared to the other studied areas.

Keywords

Main Subjects

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H.B., Spakman, W., Monie, P., Meyer, B., and Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148, 692–725. https://doi.org/10.1017/ S001675681100046X.
Alizadeh, B., Sarafdokht, H., Rajabi, M., Opera, A., and Janbaz, M., 2012a. Organic geochemistry and petrography of Kazhdumi (Albian-Cenomanian) and Pabdeh (paleogene) potential source rock in Southern part of the Dezful Embayment, Iran. Org. Geochem. 49, 36-46. https://doi.org/10.1016/j.orggeochem.2012.05.004.
Allen, M.B., and Talebian, M., 2011. Structural variation along the Zagros and the nature of the Dezful Embayment. Geological Magazine, 148: 5-6, 911–924. https://doi.org/10.1017/S0016756811000318.
Bahroudi, A., and Koyi, H., 2003. Effect of spatial distribution of Hormoz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach Journal of the Geological Society. 160, 719-733. https://doi.org/10.1144/0016-764902-135.
Barzegar, F., 1994. Basement fault mapping of E Zagros Flooded Belt (SW of Iran) based on space-born remotely sensed data. In Proceedings of the 10th Thematic Conference On Geologic Remote Sensing: Exploration, Environment and Engineering, 9–12 May 1994, San Antonio, TX (Texas: Environmental Research Institute of Michigan), 10, 455–466.
Behar, F., Beaumont, V., and Pentea do, B., 2001. Rock-Eval 6 Technology: Performances and Developments, Oil and Gas Science and Technology-Rev. IFB, 56, 111-134. https://doi.org/10.2516/ogst:2001013.
Bordenave, M. L., 2002. The Middle Cretaceous to Early Miocene petroleum system in the Zagros domain of Iran, and its prospect evaluation. In AAPG Annual Meeting, Houston, Texas, 6, 1-9.
Bordenave, M. L., and Hegre, J. A., 2010. Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems, Geol. Soc. London, Spec. Publ., 330, 291–353. https://doi.org/10.1144/SP330.14.
Bordenave, M.L., and Burwood, R., 1990. Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Sarvak reservoirs oil accumulations. Organic Geochemistry, 16, 369-387. https://doi.org/10.1016/0146-6380(90)90055-5.
Burberry, C. M., 2015. The effect of basement fault reactivation on the Triassic - recent geology of Kurdistan, north Iraq. Journal of Petroleum Geology, 38:1, 37–58. https://doi.org/10.1111/jpg.12597.
Carruba, S., Perotti, C. R., Buonaguro, R., Calabro, R., Carpi, R., and Naini, M., 2006. Structural pattern of the Zagros fold-and-thrust belt in the Dezful Embayment (SW Iran). In Styles of Continental Contraction (eds S. Mazzoli & R. W. H. Butler), Geological Society of America, 414, 11–32. https://doi: 10.1130/2006.2414(02).
Coccioni, R., Luciani, V., and Marsili, A., 2006. Cretaceous oceanic anoxic events and radially elongated chambered planktonic foraminifera: Paleoecological and paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 66–92. https://doi.org/10.1016/j.palaeo.2006.09.024.
Dembicki, H., 2016. Practical petroleum geochemistry for exploration and production. Elsevier, 0-331.
Espitalié, J., 1986. Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance, Therm. Model. Sediment. Basins, 44, 475–496. https://doi.org/10.1306/7895690.
Espitalie, J., Deroo, G., and Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Deuxième partie., Rev. l’Institut français du Pétrole, 40:6, 755–784. https://doi.org/10.2516/ogst:1985045.
Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., and Paulet, J., 1977. Méthode rapide de caractérisation des roches mères, de leur potential pétrolier et de leu degree d’évolution,” Rev. l’Institut Français du Pétrole, 32, 23–45. https://doi.org/10.2516/ogst:1977002.
Farzipour-Saein, A., Nilfouroushan, F., and Koyi, H., 2013. The effect of basement step/topography on the geometry of the Zagros fold and thrust belt (SW Iran): an analog modeling approach. International Journal of Earth Sciences, 102:8, 2117–2135. https://doi.org/10.1007/s00531-013-0921-5.
Ghasemi Nezhad, A., and Ghani Abadi, S., 2009. Investigating the hydrocarbon generation potential and accumulation environment of Kazhdumi Formation in Nowruz oil field, north west of Persian Gulf. Journal of Stratigraphy and Sedimentology Research, 25(37), 19-34. (in persion)
Ghasemi Nezhad, A., Rezaei, Z., and Sheikh Zakariaei, J., 2015. Investigating environmental conditions and geochemical characteristics of Kazhdumi Formation in Soroush oil field based on palynological evidence and rock-Eval pyrolysis. Journal of Stratigraphy and Sedimentology Research, 31(59), 35-50. (in persion)
Ghasemi-Nejad, E., Head, A.M., and Naderi, M., 2009. Palynology and petroleum potential of the Kazhdumi Formation (Cretaceous: AlbianeCenomanian) in the south pars field, northern Persian Gulf. Mar. Pet. Geol. 26, 805-816. https://doi.org/10.1016/j.marpetgeo.2008.05.005.
Habib Nia, B., Askari, S., Hoseini, A., and Alizadeh, B., 2015. Geochemical evaluation of Kazhdumi Formation in Azadegan oil field wells using Rock-Eval pyrolysis method. Journal of Geochemistry, 
4(3), 129-134. (in persion)
Hessami, K., Koyi, H.A., and Talbot, C.J., 2001.The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt. Journal of Petroleum Geology, 24, 5–28. https://doi.org/10.1111/j.1747-5457.2001.tb00659.x.
Hosseiny, E., Rabbani, A. R., and Moallemi, S. A., 2016. Source rock characterization of the Cretaceous Sarvak Formation in the eastern part of the Iranian sector of Persian Gulf, Org. Geochem. 99, 53–66. https://doi.org/10.1016/j.orggeochem.2016.06.005.
Hunt, J. M., 1996. Petroleum geochemistry and geology. 2. WH Freeman New York.
Jackson, K. S., Hawkins, P., and Bennett, A. J. R., 1980. Regional facies and geochemical evaulation of the southern denison trough, queensland, Appea J., 20:1, 143–158. https://doi.org/10.1071/AJ79013.
Jahani, M., Fazli, L., and Sanmari, S., Karimi, A., 2012. Geochemical evaluation of Kazhdumi Formation in Chahe Binak-4 using Rock-Eval pyrolysis method. Journal of Geochemistry, 1(2), 129-134. (in persion)
Jarvis, I., Gale, A. S., Jenkyns, H. C., and  Pearce, M. A., 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian – Campanian (99.6–70.6 Ma). Geological Magazine, 143:5, 561–608. https://doi.org/10.1017/S0016756806002421.
Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11:3, 1-30. https://doi.org/10.1029/2009GC002788.
Jones, R., 1987. Organic Facies. In: Brooks, J., Welte, D. (Eds.), Advances in Petroleum Geochemistry, Acad. Press. New York, 1–90. https://doi.org/10.1007/978-94-017-0763-3-5.
Kamali, M., Fathi Mobarakabad, A., and Mohsenian., E., 2006. Petroleum geochemistry and thermal modeling of  Pabdeh Formation in Dezful Embayment, J. Sci. (University Tehran), 32, 1–11.
Leckie, R.M., Bralower, T.J., and Cashman, R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17, 13-1-29. https://doi.org/10.1029/2001PA000623.
Mahbobipour, H., Kamali, M. R., and Solgi, A., 2016. Organic geochemistry and petroleum potential of Early Cretaceous Garau Formation in central part of Lurestan zone, northwest of Zagros, Iran, Marin and Petroleum Geology, 77, 99-110. https://doi.org/10.1016/j.marpetgeo.2016.05.004.
Maurer, F., Van Buchem, S.P.F., Eberli, G.P., Pierson, B.J., Raven, M.J., Larsen, P.H., Al- Husseini, M.I., and Vincent, B., 2013. Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova, 25, 87-94. https://doi.org/10.1111/ter.12009.
Mrkic, S., Stojanovic, K., Kostic, A., Nytoft, H.P., and  Sajnovic, A., 2011. Organic geochemistry of Miocene source rocks from the Banat Depression (SE Pannonian Basin, Serbia), Organic Geochemistry, 42, 655-677. https://doi.org/10.1016/j.orggeochem.2011.03.025.
Mukhupadhyay, P., 1995. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada, Org. Geochem, 22, 85–104. https://doi.org/10.1016/0146-6380(95)90010-1.
Mutterlose, J., Bornemann, A., and Herrle, J., 2009. The Aptian-Albian cold snap: evidence from mid Cretaceous icehouse interludes. N. Jb. Geol. Pala¨ont. Abh, 252, 217–225. https://doi.org/10.1127/0077-7749/2009/0252-0217.
Opera, A., Alizadeh, B., Sarafdokht, H., Janbaz, M., Fouladvand, R., and Heidarifard, M.H., 2013. Burial history reconstruction and thermal maturity modeling for the middle Cretaceouse Early Miocene petroleum system, southern dezful embayment, SW Iran. Int. J. Coal Geol. 120, 1-14. https://doi.org/10.1016/j.coal. 2013.08.008.
Peters, K. E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis,” Am. Assoc. Pet. Geol. Bull., 70:3, 318–329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D.
Rabbani, A.R., and Bagheri Tirtashi, R., 2010. Hydrocarbon source rock evaluation of the supergiant Ahwaz oilfield, SW Iran. Aust. J. Basic Appl. Sci. 4, 673-686. https://doi.org/15875-4413.
Rahmani, O., Aali, J., Mohseni, H., Rahimpour-Bonab, H., and Zalaghaie, S., 2010. Organic geochemistry of Gadvan and Kazhdumi Formations (Cretaceous) in south pars field, Persian Gulf, Iran. J. Pet. Sci. Eng. 70, 57-66. https://doi.org/10.1016/j.petrol.2009.09.009.
Robinson, S.A., Heimhofer, U., Hesselbo, S.P., and Petrizzo, M.R., 2017. Mesozoic climates and oceans – a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology, 64, 1–15. https://doi.org/10.1111/sed.12349.
Sfidari, E., Zamanzadeh, S. M., Dashti, A., Opera, A., and Tavakkol, M. H., 2016. Comprehensive source rock evaluation of the Kazhdumi Formation, in the Iranian Zagros Foldbelt and adjacent offshore. Mar. Pet. Geol. 71, 26–40. https://doi.org/10.1016/j.marpetgeo.2015.12.011.
Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D., and Simmons, M.D., 2001. Arabian Plate sequence stratigraphy. GeoArabia 371. 2, Gulf PetroLink, Bahrain. https://doi.org/10.2113/geoarabia0901199.
Sherkati, S., and Letouzey, J., 2004. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine Petroleum Geology, 21, 535–554. https://doi.org/10.1016/j.marpetgeo.2004.01.007.
Tissot, B.P., and Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer, New York.
Trabucho Alexandre, J., Van Gilst, R.I., Rodriguez-Lopez, J.P., and de Boer, P.L., 2011. The sedimentary expression of oceanic anoxic event 1b in the North Atlantic. Sedimentology, 58, 1217-1246. https://doi.org/10.1111/j.1365-3091.2010.01202.x 
Van Buchem, F.S.P., Baghbani, D., Bulot, L.G., Caron, M., Gaumet, F., Hosseini, S.A., Keyvani, F., Schroeder, R., Swennen, R., Vedrenne, V., and Vincent, B., 2010. Barremian - Lower Albian sequence-stratigraphy of southwest Iran (Gadvan, Dariyan and Kazhdumi formations) and its comparison with Oman, Qatar and the United Arab Emirates. In: van Buchem, F.S.P., Al-Husseini, M.I., Maurer, F. & Droste, H.J. (eds) Barremiane Aptian Stratigraphy and Hydrocarbon Habitat of the Eastern Arabian Plate. GeoArabia Special Publication, 2, 503-548. https://doi.org/10.1016/9781733475761.
Vincent, B., Buchem, F.S.P., Van Bulot, L.G., Immenhauser, A., Caron, M., Baghbani, D., and Huc, A.Y., 2010. Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian e lower Albian successions of southwest Iran (Dariyan and Kazhdumi Formations). In: van Buchem, F.S.P., Al-Husseini, M.I., Maurer, F., Droste, H.J. (Eds.), BarremianeAptian Stratigraphy and Hydrocarbon Habitat of the Eastern Arabian Plate, GeoArabia, Gulf PetroLink, Bahrain, 2, 139-197. 
Wilson, P.A., Norris, R.D., and Cooper, M.J., 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise: Geology, 30, 607–710. https://doi.org/10.1130/0091-7613.
Yassaghi, A., 2006. Integration of Landsat imagery interpretation and geomagentic data on verification of deep-seated transverse fault lineaments in SE Zagros, Iran. International Journal of Remote Sensing, 27:20, 4529–4544. https://doi.org/10.1080/01431160600661283.
Yose, L.A., Strohmenger, C.J., Al-Hosani, I., Bloch, G., and Al-Mehairi, Y., 2010. Sequence-stratigraphic evolution of an Aptian carbonate platform (Shuaiba Formation), eastern Arabian Plate, onshore Abu Dhabi, United Arab Emirates. GeoArabia Spec. 4, 309–340. https://doi.org/9781733475761.
Zohrabzadeh, M., Rahimpour–Bonab, H., and Aleali, M., 2020. The Middle Cretaceous – Lower Miocene 3D petroleum system Modeling of Kupal Oil Field, South West of Iran, Dezful Embayment. Geopersia 10:1, 165-194. https://doi.org/10.22059/GEOPE.2019.281259.648477.