نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی مهندسی، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران، ایران

2 دانشکده علوم زمین، دانشکدگان علوم، دانشگاه تهران، تهران، ایران

چکیده

اثر همزمان تعداد درزه، بازشدگی، نوع و ستبرای پرشدگی بر میزان ارتعاش ناشی از انتشار امواج در چهار بلوک سنگ  آهک خشک و همسان به ابعاد 10×10×50 سانتی‌متر مطالعه شد. بیشینه ارتعاش ذرات در بلوک‌های سنگ بکر و درزه دار در سه جهت عمود برهم توسط ژئوفون سه مؤلفه ای ثبت شد. در بلوک شماره 1 با یک درزه در وسط بلوک، میزان بازشدگی درزه از 3- 6- 9- 12- 15- 18 -21 میلی متر تغییر یافت و اندازه گیری ها برای هر مقدار بازشدگی در دو سری انجام شد. در سری اول، درزه پرشده با خاک رس و در سری دوم درزه پرشده با خاک ماسه ای مورد آزمایش قرار گرفت. این سری آزمایش ها بر روی بلوک های شماره 2 با دو درزه، بلوک شماره 3 با سه درزه و بلوک شماره 4 با چهار درزه نیز انجام شد. نتایج آزمایش ها نشان داد که وجود درزه   در بلوک های سنگی، بیشینه ارتعاش ذرات در هر سه جهت را با نسبت های مختلف کاهش داد. کاهش مقدار بیشینه ارتعاش ذرات در جهت انتشار امواج بیش از سایر جهات است. رابطه بین افزایش شاخص درزه داری و کاهش بیشینه ارتعاش ذرات به صورت غیرخطی است. با افزایش شاخص درزه داری در نمونه های درزه دار، بیشینه ارتعاش ذرات با نرخ کمتری کاهش می یابد.

کلیدواژه‌ها

موضوعات

Athanasopoulos, GA., and Pelekis, PC., 2000. Ground vibrations from sheet pile driving in urban environment: measurements, analysis and effects on buildings and occupants. Soil Dynamics and Earthquake Engineering, 19:371–87. DOI:10.1016/s0267-7261(00)00008-7.
Barton, N., 2006. Rock Quality, Seismic Velocity, Attenuation and Anisotropy. CRC Press: Boca Raton, FL, USA, 756p.DOI.org/10.1201/9780203964453.
Boadu, F.K., 1997. Fractured rock mass characterization parameters and seismic properties, analytical studies. Journal of Applied Geophysics, 36: 1–19. DOI.org/10.1016/S0926-9851(97)00008-6.
Boadu, F.K., and Long, L.T., 1996. Effects of fractures on seismic-wave velocity and attenuation. Geophysical Journal International, 127: 86-110. DOI.org/10.1111/j.1365-246X.1996.tb01537.x.
Cai, J. G., and Zaho, J., 2000. Effects of multiple parallel fractures on apparent wave attenuation in rock masses. International Journal of Rock Mechanics and Mining Sciences, 37(4): 661-682. DOI:10.1016/S1365-1609(00)00013-7.
Chong, S.H., Kim, J.W., Cho, G.C., and Song, K.I., 2020. Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass. Geomechanics and Engineering, 21:227–236. DOI.org/10.12989/gae.2020.21.3.227.
El Azhari, H., El Amrani, I-E., and El Hassani, I-E., 2013. Effect of the number and orientation of fractures on the P-wave velocity diminution: application on the building stones of the rabat area (Morocco). Geomaterials, 3: 71-81. DOI:10.4236/gm.2013.33010.
Gao, K., Fu, S., Gibson, R. L., Chung, E. T., and Efendiev, Y., 2015. Generalized multiscale finite-element method (GMSFEM) for elastic wave propagation in heterogeneous, anisotropic media. Journal of Computational and Physics, 259: 161-188. DOI:10.1016/j.jcp.2015.03.068.
Gu, B., Nihei, K. T., and Myer, L. R., 1997. Numerical investigation of fracture interface waves. Journal of the Acoustical Society of America, 102 (1): 120-127. DOI:10.1121/1.419769.
Han, Z., Li, D., Zhou, T., Zhu, Q., and Ranjith, P.G., 2020. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses. International Journal of Rock Mechanics & Mining Sciences, 131: 104352. DOI.org/10.1016/j.ijrmms.2020.104352.
Hudaverdi, T., 2012. Application of multivariate analysis for prediction of blast-induced ground vibrations. Soil Dynamics and Earthquake Engineering, 43:300–308. DOI:10.1016/j.soildyn.2012.08.002.
Hudson, J.A., 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64(1): 133– 150. DOI.org/10.1111/j.1365-246X.1981.tb02662.x.
ISRM, 1992. Suggested method for blast vibration monitoring. International Journal of Rock Mechanics and Mining &Sciences, 29(2):145–6. http://worldcat.org/issn/01489062.
Jug, J., Stanko, D., Grabar, K., and Hrženjak, P., 2020. New approach in the application of seismic methods for assessing surface excavatability of sedimentary rocks. Bulletin of Engineering Geology and Environment, 79: 3797–3813. DOI:10.1007/s10064-020-01802-1.
Kahraman, S., 2002. The effects of fracture roughness on P-wave velocity. Engineering Geology, 63: 347– 350. DOI.org/10.1016/S0013-7952(01)00089-8.
Khandelwal, M., and Singh, TN., 2006. Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach.Journal of Sound and Vibration, 289 (4–5):711–25. DOI:10.1016/j.jsv.2005.02.044.
Kim, J.W., Chong, S.H., and Cho, G.C., 2021. Effects of gouge fill on elastic wave propagation in equivalent continuum jointed rock mass. Materials, 14: 3173. DOI: 10.3390/ma14123173.
Kumar, R., Choudhury, D., and Bhargava, K., 2016. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. Journal of Rock Mechanics and Geotechnical Engineering, 8: 341-349.DOI.org/10.1016/j.jrmge.2015.10.009.
Kuzu, C., 2008. The importance of site-specific characters in prediction models for blast-induced ground vibrations. Soil Dynamics and Earthquake Engineering, 28: 405–414. DOI:10.1016/j.soildyn.2007.06.013.
Leucci, G., and Giorgi, L.D., 2006. Experimental studies on the effects of fracture on the P and S wave velocity propagation in sedimentary rock (CalcarenitedelSalento). Engineering Geology, 84: 130–142. DOI10.1016/j.enggeo.2005.12.004.
Liu, T., Li, J., Li, H., Zheng, Y., and Li, N., 2015. Numerical analysis on effect of nonlinear joints on propagation of stress wave. 34(5): 953-959. DOI:10.13722/j.cnki.jrme.2014.0262.
Liu, Y., Lu, C-P., Liu, B., Zhang, H., and Wang, H-Y., 2019. Experimental and field investigation on seismic response of joints and bedding in rocks. Ultrasonic, 97: 46-56. DOI: 10.1016/j.ultras.2019.05.001.
Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A., and Salimi, AR., 2010. Predicting blast-induced ground vibration using various types of neural networks. Soil Dynamics and Earthquake Engineering, 30:1233–1236. DOI.org/10.1016/j.soildyn.2010.05.005.
Resende, J.R.P., 2010. An investigation of stress wave propagation through rock joints and rock masses. Ph.D. Thesis, Universidade do Porto, Porto, Portugal.
Singh, TN., 2004. Artificial neural network approach for prediction and control of ground vibrations in mines. Mining Technology, 113(4):251-256. DOI:10.1179/037178404225006137.
Singh, TN., and Singh, V., 2005. An intelligent approach to prediction and controlground vibration in mines; Geotechnical and Geological Engineering, 23:249–62. DOI:10.1007/S10706-004-7068-X.
Wang, W.H., Li, X-B., Zuo, J., Zhou, Z.L., and Zhang, Y.P., 2006. 3DEC modeling on effect of joints and interlayer on wave propagation. Transactions of Nonferrous Metals Society of China, 16: 728-734. DOI.org/10.1016/S1003-6326(06)60129-5.
Wu, W., and Zhao, J., 2015. Effect of water content on P-wave attenuation across a rock fracture filled with granular materials. Rock Mechanic and Rock Engineering, 48: 867–871. DOI:10.1007/s00603-014-0606-9.
Yang, H., Duan, H.F., and Zhu, J. B., 2019. Ultrasonic P-wave propagation through water-filled rock joint: An experimental investigation. Journal of Applied Geophysics, 169: 1–14. DOI.org/10.1016/j.jappgeo.2019.06.014.
Yang, H., Duan, H-F., and Zhu, J., 2020. Effects of filling fluid type and composition and joint orientation on acoustic wave propagation across individual fluid-filled rock joints. International Journal of Rock Mechanics & Mining Sciences, 128: 104248. DOI:10.1016/j.ijrmms.2020.104248.
Yang, L., Mei, J., Li, SH., Jiang, Y., Guo, K., Zhang, B., and Yang, W., 2018. Experimental study of open fractures multifarious effects on ultrasonic wave propagation in rock masses. Journal of the Society of Materials Science, Japan, 67(8): 818. DOI.org/10.2472/jsms67.811.
Zhang, ZX., Hou, D.F., and Aladejare, A., 2020. Empirical equations between characteristic impedance and mechanical properties of rocks. Journal of Rock Mechanics and Geotechnical Engineering, 12: 975-983. https://doi.org/10.1016/j.jrmge.2020.05.006.
Zhao, X. B., Zhao, J., Cai, J. G, and Hefny, A. M., 2008. UDEC modeling on wave propagation across fractured rock masses. Computer and Geotechnics., 35: 97-104. DOI.org/10.1016/j.compgeo.2007.01.001.
Zheng, B., Qi, Sh., Huang, X., Liu, Y., Xue, L., and Liang, N., 2020. Stress wave propagation through rock joints filled with viscoelastic medium considering different water contents. Applied Sciences, 10: 47-97. DOI:10.3390/app10144797.
Zhu, JB., Perino, A., Zhao, GF., Barla, G., Li, JC., Ma, GW., and Zhao, J., 2011. Seismic response of a single and a set of filled joints of viscoelastic deformational behavior. Geophysical Journal International, 186: 1315–1330. DOI.org/10.1111/j.1365-246X.2011.05110.x.
Zhukov, V.S., and Kuzmin, Y. O., 2020. The influence of fracturing of the rocks and model materials on p-wave propagation velocity: experimental studies. Physics of the solid earth, 56 (4): 39-50. Doi: 10.1134/S1069351320040102.