نوع مقاله : مقاله مروری

نویسندگان

گروه نقشه‌برداری، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

تداخل‌سنجی طول مبنای بسیار بلند (Very Long Baseline Interferometry) یا به اختصار VLBI یکی از ر‌وش‌های مهم در علم ژئودزی می‌باشد. از جمله توانایی‌های این روش می‌توان به ایجاد چارچوب مرجع سماوی بین‌المللی (International Celestial Reference Frame)، تعیین متغیرهای توجیه زمین (Earth Orientation Parameters)، مختصات ایستگاه مشاهداتی با دقت بسیار بالا و متغیر انحراف نور اشاره کرد. کارهای بسیاری برای افزایش دقت داده‌های تکنیک VLBI می‌توان انجام داد که از جمله آنها می‌توان به بهبود فنی تجهیزات مورد استفاده، بهبود مدل‌های فیزیکی، استفاده از روش‌های مناسب پردازش داده و همچنین افزایش تعداد ایستگاه‌های مشاهداتی اشاره کرد. در این نوشتار مکان بهینه برای احداث ایستگاه VLBI در منطقه خاورمیانه جهت کاهش خطای برآورد متغیرهای توجیه زمین در دوره مشاهداتی CONT17 بررسی شده است. نتیجه اصلی پژوهش نشان می‌دهد که با احداث یک ایستگاه مشاهداتی در عمان، میانگین خطای تعیین متغیرهای توجیه زمین در شبکه مشاهداتی Legacy-1 64/6 درصد و با احداث یک ایستگاه مشاهداتی در مصر، میانگین خطای تعیین متغیرهای توجیه زمین در شبکه مشاهداتی Legacy-2 86/13 درصد کاهش می‌یابد.

کلیدواژه‌ها

موضوعات

Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of geophysical research: solid earth 121(8), 6109-6131, DOI: 10.1002/2016JB013098.
Behrend, D., Thomas, C., Gipson, J., Himwich, E., and Le Bail, K., 2020. On the organization of CONT17, Journal of Geodesy 94(10), 1-13, DOI: 10.1007/s00190-020-01436-x.
Fey, A.L., Gordon, D., Jacobs, C.S., Ma, C., Gaume, R.A., Arias, E.F., Bianco, G., Boboltz, D.A., Böckmann, S., Bolotin, S., and Charlot, P., 2015. The second realization of the international celestial reference frame by very long baseline interferometry. The Astronomical Journal 150(2), 58, DOI: 10.1088/0004-6256/150/2/58.
Gipson, J., MacMillan, D., and Petrov, L., 2008. Improved estimation in VLBI through better modeling and analysis. Measuring the Future, Proceedings of the Fifth IVS, 157.
Huda, I.N., Hidayat, T., Dermawan, B., Lambert, S., Liu, N., Leon, S., Fujisawa, K., Yonekura, Y., Sugiyama, K., Hirota, T., and Premadi, P.W., 2021. Measuring the impact of Indonesian antennas on global geodetic VLBI network. Experimental Astronomy 52(1), 141-155, DOI: 10.1007/s10686-021-09773-1.
Jagoda, M., and Rutkowska, M., 2020. Use of VLBI measurement technique for determination of motion parameters of the tectonic plates. Metrology and Measurement Systems, 151-165, DOI: 10.24425/mms.2020.131722.
Krásná, H., Böhm, J., and Schuh, H., 2013. Tidal Love and Shida numbers estimated by geodetic VLBI. Journal of geodynamics 70, 21-27, DOI: 10.1016/j.jog.2013.05.001.
Lambert, S.B. and Le Poncin-Lafitte, C., 2011. Improved determination of γ by VLBI. Astronomy & Astrophysics 529, A70, DOI: 10.1051/0004-6361/201016370.
MacMillan, D.S., 2017. EOP and scale from continuous VLBI observing: CONT campaigns to future VGOS networks. Journal of Geodesy 91(7), 819-829, DOI: 10.1007/s00190-017-1003-4.
Nilsson, T., Heinkelmann, R., Karbon, M., Raposo-Pulido, V., Soja, B., and Schuh, H., 2014. Earth orientation parameters estimated from VLBI during the CONT11 campaign. Journal of Geodesy 88(5), 491-502, DOI: 10.1007/s00190-014-0700-5.
Pany, A., Böhm, J., MacMillan, D., Schuh, H., Nilsson, T., and Wresnik, J., 2011. Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. Journal of Geodesy 85(1), 39-50, DOI: 10.1007/s00190-010-0415-1.
Petit, G., and Luzum, B., 2010. IERS conventions. IERS technical note, 36(1), 2010.
Schartner, M., 2019. Optimizing geodetic VLBI schedules with VieSched++. Ph.D. thesis, Univ. of Wien, Austria, 148 p.
Schartner, M., Böhm, J., and Nothnagel, A., 2020. Optimal antenna locations of the VLBI Global Observing System for the estimation of Earth orientation parameters. Earth, Planets and Space 72(1), 1-14, DOI: 10.1186/s40623-020-01214-1. 
Schartner, M., and Böhm, J., 2019. VieSched++: a new VLBI scheduling software for geodesy and astrometry. Publications of the Astronomical Society of the Pacific 131(1002), 084501, DOI: 10.1088/1538-3873/ab1820.
Schönberger, C., 2013. Simulations of VLBI observations with the Onsala Twin Telescope. M.Sc. thesis, Univ. of Chalmers, Sweden, 46 p, DOI: 20.500.12380/185857.
Schuh, H., and Böhm, J., 2013. Very long baseline interferometry for geodesy and astrometry. Springer, Berlin, Heidelberg, 339-376, DOI: 10.1007/978-3-642-28000-9_7.
Shabala, S.S., McCallum, J.N., Plank, L., and Böhm, J., 2015. Simulating the effects of quasar structure on parameters from geodetic VLBI. Journal of Geodesy 89(9), 873-886, DOI: 10.1007/s00190-015-0820-6.
Špičáková, H., Böhm, J., Cerveira, P.M., and Schuh, H., 2009. Determination of degree-2 Love and Shida numbers from VLBI. Marees Terrestres Bulletin D›Informations, 11679.