نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی نفت، دانشکده فنی و مهندسی، ,واحد لامرد، دانشگاه آزاد اسلامی، لامرد، ایران

چکیده

باتولیت چهارگنبد در سیرجان و در بخش جنوب­‌خاوری پهنه ماگمایی ارومیه-دختر واقع شده است. این توده نفوذی با ترکیب اسیدی تا کمی حد واسط به داخل واحدهای آتشفشانی ائوسن تزریق شده است. گرچه بیشتر حجم ترکیبات سنگی، گرانودیوریت و مونزوگرانیت می­‌باشد، با این حال، ترکیبات دیگر سنگی نیز شامل کوارتزدیوریت، تونالیت و سینوگرانیت موجود بوده و مرز تبدیل سنگ­‌ها به یکدیگر تدریجی می‌­باشد. ترکیب عمده سنگ میزبان گرانودیوریت و مونزوگرانیت است. این توده حاوی انکلاوهای میکروگرانولار مافیک متعدد با ترکیب دیوریت و مونزودیوریت می­‌باشد. همچنین دایک‌­های میکروگرانولار، توده مافیک را قطع کرده‌­اند. انکلاوها عموما تماس ناگهانی با سنگ­‌های میزبان دارند و از مجموعه کانی­‌های آذرین تشکیل شده‌اند. وجود شواهد صحرایی مانند انکلاوهای میکروگرانولار مافیک با اشکال کروی تا بیضی، زنگوله‌ای و میله‌ای، وجود دایک‌های مافیک سین پلوتونیک و همچنین شواهد بافتی نشان‌­دهنده عدم تعادل از قبیل حضور پلاژیوکلازهایی با منطقه‌­بندی ترکیبی و سطوح تحلیلی مکرر و کوارتزهای اوسلی در انکلاوها، نشانه تغییرات شیمیایی و یا حرارتی مذاب در حین رشد بلور و شاهدی برای رخداد اختلاط ماگمایی هستند. انکلاوهای موجود در داخل توده گرانیتوییدی منطقه، در بیشتر عناصراصلی همچون Al2O3،CaO ،MgO ، Fe2O3، TiO2، P2O5 مقادیر بالاتری نسبت به سنگ میزبان نشان می­‌دهند. از دید عناصر نادر خاکی (REE)، سنگ­‌های گرانیتویید میزبان و انکلاوهای همراه، الگوهای  REE نسبتاً تفریق یافته با الگوهای LREE شیب‌دار و MREE و HREE تخت به نمایش می­‌گذارند. همچنین در الگوهای REE سنگ‌­های مورد مطالعه، بی‌هنجاری منفی خفیفی در Eu مشاهده می‌شود که گویای دخالت پلاژیوکلاز در تشکیل و تحول سنگ‌­های منطقه و یا تبلور آنها در شرایط فوگاسیته کم اکسیژن است. بر اساس نمودارهای تعیین محیط زمین‌ساختی-ماگمایی، کلیه نمونه‌های مورد مطالعه از منطقه چهار گنبد، در محدوده کمان­‌های قوسی ناشی از فرورانش قرار می­‌گیرند و ویژگی محیط‌­های حاشیه فعال قاره‌­ای را نشان می‌دهند.

کلیدواژه‌ها

موضوعات

خان ناظر، ن. و امامی، ه، 1375، نقشه چهارگنبد، مقیاس 1:100000، سازمان زمین شناسی و اکتشافات معدنی کشور.
درگاهی، س.، 1386، آنالیز پتروژنتیکی و الگوی ژئودینامیکی توده های گرانیتوئیدی و نقش ماگماتیسم آداکیتی در کانی سازی مس در ماگماتیسم میوسن بعد از برخورد در ناحیه سرچشمه- شهربابک شمال غرب کرمان، رساله دکترا، دانشگاه شهید باهنر کرمان،ص310.
صفار حیدری، ر.، قربانی، م.، مرادیان، ع. و شیخ فخرالدین، س.، 1396، پتروگرافی، ژئوشیمی و پتروژنز سنگ های ماگمایی محدوده چهار گنبد (شمال شرق سیرجان)، سومین همایش ملی زمین‌شناسی و اکتشافات معدنی، کرمان، https://civilica.com/doc/642125.    
فضل نیا، ع. و مرادیان، ع.،1380، محیط تکتونوماگمایی گرانیتوئیدهای چهار گنبد سیرجان، پنجمین همایش انجمن زمین شناسی ایران، تهران، https://civilica.com/doc/14975.
ولی­ زاده، م. و.، صادقیان، م. و اکرمی، م. ع.  (مترجمان)،1380، انکلاوها و پترولوژی گرانیت­ نوشته دیدیه و باربارن (1973) انتشارات دانشگاه تهران، ص 823 .
Arculus, R. J., 1987. The significance of source versus process in the tectonic controls of magma genesis. Journal of Volcanology and Geothermal Research, 32(1),p. 1-12, https://doi.org/10.1016/0377-0273(87)90033-3.
Balk, R., 1937. The structural behavior of igneous rocks. Geol. Soc, Am., Mem., 5:177pp. https://www.abebooks.com/STRUCTURAL-BEHAVIOR-IGNEOUS-ROCKS-SOCIETY-MEMOIR/30805465854/bd.
Barbarin, B., 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada Batholith, California. Journal of Geophysical Research, 95, 17747-17756. https://doi.org/10.1029/JB095iB11p17747.
Barbarin, B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80, 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
Barbarin, B., and Didier, J., 1991. Review of the main hypothesis proposed for the genesis and evolution of mafic microgranular enclaves. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology: Developments in Petrology, 13, Elsevier, Amsterdam, 367-373. https://rimag.ricest.ac.ir/ar/Article/9507.
Baxter, S., and Feely, M., 2002. Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76 (1-2), 63–74. https://doi.org/10.1007/s007100200032.
Bea,  F.,  Fershtater,  G.,  and Corretge,  L.G.,  1992.  The  geochemistry  of  phosphorus  in  granite rocks and the effect of aluminium.  Lithos  29, p.  43–56. https://doi.org/10.1016/0024-4937(92)90033-U.
Blundy, J.D., and Sparks, R.S.J., 1992. Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy. Journal of Petrology, 33, 1039-1104. https://doi.org/10.1093/petrology/33.5.1039.
Bonin, B., 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, 97, 1-29. https://doi.org/10.1016/j.lithos.2006.12.007.
Broska, I., William, C.T., Uher, P., Konecny, P., and Leichmann, J., 2004. The geochemistry of phosphorous in different suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chemical Geology 205, p. 1–15, https://doi.org/10.22071/gsj.2017.46769.
Bussy, F., and Ayrton, S., 1990. Quartz 524-542. textures in dioritic rocks of hybrid origin. https://rimag.ricest.ac.ir/fa/Article/9507/rimag.ricest.ac.ir.
Castro, A., 2013. The off-crust origin of Transactions of the Royal Society of Edinburgh granite batholiths. Geoscience Frontiers, 5, 63-75. Earth Sciences, 87, 171-181. https://www.redalyc.org/journal/505/50558534002/html/.
Chappell, B. W., Stephens, W. E. 1988. Origin of infracrustal(I-type) granite magmas. Transactions of the royal Sosety of Edinburgh: Earth Sciences, 79(2-3), 71-86. https://doi.org/10.1017/S0263593300014139.
Chappell, B.W. , 1999. Aluminium Saturation in I and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46, 535-551. http://dx.doi.org/10.1016/S0024-4937(98)00086-3.
Chappell, B.W., and White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, p. 173–174, http://www.sciencedirect.com/science/article/pii/0040195177900038.
Chappell, B.W., and White, A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinburgh: Earth Sci. 83,p. 1–26. http://dx.doi.org/10.1017/S0263593300007720.
Chappell, B.W., and White, A.J.R., 2011. Two contrasting granite types: 25 years later.Australiuan  Journal of EarthSciences, 48(4), 489-500. https://doi.org/10.1046/j.1440-0952.2001.00882.x.
Chappell, B.W., White, A. J.R., and Wyborn, D., 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of petrology, 28. 1111-1138. https://doi.org/10.1093/petrology/28.6.1111.
Chen, B., Chen, Z.C., and Jahn, B.M., 2009. Origin of mafic enclaves from the Taihang  Mesozoic orogen, north China craton, Lithos, V. 110, Issues 1–4, June 2009, P. 343-358. doi:10.1016/j.lithos.2009.01.015.
Chen, Y.D., Price, R.C., and White, A.J.R., 1989. Inclusions in three S-Type granites from Southeastern Australia. Journal of Petrology, V. 30, Issue 5, 1181-1218. https://doi.org/10.1093/petrology/30.5.1181.
Clemens, J. D., Darbyshire, D. P. F., and Flinders, J., 2009. Sources of post- orogenic calkalkaline magma; The Arrochar and Garabal Hill- Glen Fyne complex. Scotland, Lithos, V. 112, Issues 3-4, 524-542. doi:10.1016/j.lithos.2009.03.026.
Clemens, J.D., and Stevens, G., 2012. What weizerische mineralogische und petrographische controls chemical variation in granitic magmas ? Mitteilungen, 70, 223-235. doi.10.1016/j.lithos.2012.01.001.
Clemens, J.D., and Wall, V.J., 1988. Controls on the mineralogy of S-type plutonic and volcanic Rocks. Lithos, 21, 53-66. https://doi.org/10.1016/0024-4937(88)90005-9.
Collins, W.J., 1996. Lachlan Fold Belt specialist, University of Grenoble, France. granitoids: products of three-component mixing. https://doi.org/10.1017/S0263593300006581.
Cox, K. G., Bell, J. D., and Pankhurst, R., 1979. The interpretation of igneous rocks, London, George Allen and Unwin,p. 450. http://dx.doi.org/10.1007/978-94-017-3373-1.
Dargahi, 2007. Post-collisional Miocene magmatism in the Sarcheshmeh-Shahrebabak region NW of Kerman: Istopic study, petrogenetic analysis and geodynamic pattern of granitoid intrusive and the role of adakitic magmatism in development of copper mineralization. Unpublished Ph.D. thesis, Shahid Bahonar of University Kerman, 310p. (In Persian).
Davidson, J., Turner, S., Handley, H., Mcpherson, C., and Dosseto, A., 2007. Amphilobe “Sponage” in arc crust? , Geology 35 (9), p. 787–790, https://doi.org/10.1130/G23637A.1.
Didier, J., 1987. Contribution of enclaves studies to the understanding of origin and evolution of granitic magmas. Geol. Rundsch., 76: 41-50. https://link.springer.com/article/10.1007/BF01820572.
Fazlnia, A., and Moradian, A., 2001. Tectonomagmatic environment of the four domes of Sirjan granitoids, the 5th conference of the Geological Society of Iran, Tehran. https://civilica.com/doc/14975. (In Persian).
Floyd, P. A., and Winchester, J. A., 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary science letters,27(2), p.211-218,  https://doi.org/10.1016/0012-821X(75)90031-X.
Foley, S. F., and Wheller, G. E., 1990. Parallels in the origin of the geochemical signatures of  island arc volcanics and continental potassic igneous rocks: the role of residual titanites. Chemical Geology V. 85, Issues 1-2, p. 1–18, doi;10.1016/0009-2541(90)90120-V.
Frost, B., R., Barnes, C. G.,  Collins, W. J.,  Arculus, R. J.,  Ellis, D. J.,  and Frost, C. D., 2001. A Geochemical Classification for Granitic Rocks, Journal of Petrology, V. 42, Issue 11, P. 2033–2048, https://doi.org/10.1093/petrology/42.11.2033.
Garcia- Arias, M., Corretgé, L.G., Fernandez, C., and Castro, A., 2015. Water-present melting in the middle crust: The case of the Ollo de Sapo gneiss in the Iberian Massif (Spain). Chemical Geology, 419, 176-191. DOI:10.1016/j.chemgeo.2015.10.040.
Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X.S., and Zhou, X.M., 2002. Zircon chemistry and magma- mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, V. 61, Issues 3-4, 237-269. doi:10.1016/S0024-4937(02)00082-8.
Harker, A., 1909. The natural history of igneous rocks: Macmillion, Newyork.
Harris, N.B., Pearce, J.A., and Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications V. 19, p. 67-81, DOI:10.1144/GSL.SP.1986.019.01.04.
Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems Enclaves and Granite Petrology. In: Didier, J. and Barbarin, B., Eds., Developments in Petrology, 13, 431-444.
Irvine, T. N., and Baragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Science, 8, 523–548, https://doi.org/10.1139/e71-055.
Kemp, A.I., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt J.M., Gray, C.M., and Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814), 980-983. DOI:10.1126/science.1136154.
Kessel, R., Schmidt, M. W., Ulmer, P., and Pettke, T., 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437(7059), p. 724-727, DOI: 10.1038/nature03971.
Khan Nazer, N., and Emami, H., 1996. Geological  map of Chahargonbad, scale 1:100000, Geological Survey of Iran.(In Persian).
Kharbish, S., 2010. Geochemistry and magmatic setting of Wadi El-Markh island-arc gabbro–diorite suite, central Eastern Desert, Egypt. Chemie der Erde-Geochemistry, 70(3), p.257-266, DOI:10.1016/j.chemer.2009.12.007.
Kumar, S., 2010. Mafic to hybrid microgranular enclaves in the Ladakh batholith, northwest Himalaya: implications on calc-alkaline magma chamber processes. Journal of Geological Society of India, 76(1), 5-25. DOI:10.1007/s12594-010-0080-2.
Kumar, S., and Pieru, T., 2010. Petrography and major element geochemistry of microgranular enclaves and Neoproterozoic granitoids of South Khasi, Meghalaya; evidence of magma mixing and alkali diffusion. Journal of Geological Society India,76 (4), 345-360. DOI:10.1007/s12594-010-0106-9.
Kumar, S., Rino, V., and Pal, A.B., 2004. Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Research, v. 7, Issue 2, 539-548. DOI:10.1016/S1342-937X(05)70804-2.
Le Maitre, R. W., Bateman, P., Dudek, A. J., and Keller, M. J., Lameyre Le Bas, Sabine, P.A., Schmid, R., Sorensen, H.,  Streckeisen, A., Wolley, A.R., Zanetti, B., 1989. A Classification of Igneous Rocks and Glossary of Terms, Blackwell, Oxford, 193.
Liu, Z., Jiang, Y.H., Jia, R.Y., Zhao, P., and Zhou, Q., 2013. Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: a magmatic response to the Proto-Tethys evolution. Mineralogy and Petrology, 108, 91-110. DOI:10.1007/s00710-013-0288-0.
Loiselle, M.C., and Wones, D.R., 1979.  Characteristics and origin of. anorogenic granites, In: Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California, 468.
Maniar, P. D., and Piccoli, P. M., 1989. Tectonic discrimination of granitoids, Geo. Soc. Am. Bull., V. 101. Issue 5,  p. 635-643, https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na, and K carbonaceous in ordinary chondrites. Geochimica et Cosmochimica Acta 38 (5), p.757–775, https://doi.org/10.1016/0016-7037(74)90149-5.
Nixon, G. T., and Pearce, T. H., 1987. Laser- interferometry study of oscillatory zoning in Plagioclase: the record of magma mixing and phenocryst recyclingin Calk-alkalin mag ma chambers, Iztaccihuatl volcano, Mexico. Am. Min., 72.1144.62.
Pabst, A., 1928. Observations on inclusions in the granitic rocks of the Sierra Nevada. Univ. Calif. Pubt., Dep Geol. Sci., 17:325-386. https://pubs.er.usgs.gov/publication/70016094.
Pearce, J. A., and Gale, G. H.,1977. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geological Society, London, Special Publications, 7(1), p.14-24, http://dx.doi.org/10.1144/gsl.sp.1977.007.01.03.
Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, V. 25, Issue 4, P. 956–983, https://doi.org/10.1093/petrology/25.4.956.
Perugini, D., Poli, G., Christofides, G., and Eleftheriadis, G., 2003. Magma mixing in the Sithonia plutonic complex, Greeee: evidence from mafic microgranular enclaves. Mineralogy and Petrolog, 78(3), 173-200. DOI:10.1007/s00710-002-0225-0.
Pitcher, W. S., 1993. The nature and origin of granite. Landon: Blackie, 32:pp.
Rogers, G., and Hawkesworth, C. J., 1989. A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters, 91(3-4), p. 271-285, https://doi.org/10.1016/0012-821X(89)90003-4.
Rollinson, H.R., 1993. Using geochemical data, evolution, Presentation interpretation, Longman Scientific and Technical, England, https://doi.org/10.4324/9781315845548.
Saffar Heydari, R., Ghorbani, M., Moradian, A., and Sheikh Fakhreddin,S., 2016. Petrography, geochemistry and petrogenesis of igneous rocks of Chahar Gonbad area (northeast of Sirjan), the third national conference of geology and mineral exploration, Kerman. https://civilica.com/doc/642125. (In Persian).
Sajona, F. G., Mayry, R. C., Bellon, H., Cotten, J., and Defant, M., 1996. High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3), p. 693-726, https://doi.org/10.1093/petrology/37.3.693.
Silva, M. M. V. G., Nevia. A, M, R. and Whitehouse, M. J., 2012. Geochemistry of enclaves and host granites from the Nelas area. Central Portugal. Lithos, 50, 153-170. DOI:10.1016/S0024-4937(99)00053-5.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. The American Association of petroleum Geologists Bulletin,52:p.1229-1258.
Sun, S.S., and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D. and Norry M.J. (eds.), Magmatism in ocean basins. Geol. Soc. Londoa. Spec. Pub. 42(1), p. 313-345, https://doi.org/10.1144/GSL.SP.1989.042.01.19.
Valizadeh, M, V., Sadeghian, M., and Akrami, M, A, (translators), 2001, granite enclaves and petrology, written by Didieh and Barbaren (1973), Tehran University Press, p. 823. (In Persian).
Van Wagoner, N. A., Leybourne, M. I., Dadd, K. A., Baldwin, D. K., and McNeil, W., 2002. Late Silurian bimodal volcanism of southwestern New Brunswick, Canada: Products of continental extension. Geological Society of America Bulletin, 114(4), p. 400-418, https://doi.org/10.1130/0016-7606(2002)114<0400:LSBVOS>2.0.CO;2.
Ventura, G., Del Gaudio, P., and Lezzi, G., 2006. Enclaves provide new insights on the dynamics of magma mingling: a case study from Salina Island (Southern Tyrrhenian Sea, Italy). Earth and Planetary Science Letters, 243(1-2). 128-140. https://doi.org/10.1016/j.epsl.2006.01.004.
Vernon,  R,H., 1991. Interpretation of microstructures of microgranitoid enclaves In: Didier,j. and Barbarin, B. ,(eds) Enclaves and granite petrology , Elsevier (1991) 277-291.
Vernon, R. H., Etheridge, M.A., and Wall, V. J., 1988. Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flow. Lithos, 22:1-11. https://doi.org/10.1016/0024-4937(88)90024-2
Vernon, R.H., 1990. Crystallization and hybridism in microgranitoid enclave magmas: microstructural Evidence. Journal of Geophysical Research, 95(B11), 17849-17859. https://doi.org/10.1029/JB095iB11p17849 .
Wang, H.Z., Chen, P.R., Sun, L.Q., Ling, H.F., Zhao, Y.D., and Lan, H. F., 2015. Magma mixing and crust-mantle interaction in Southeast China during the Early Cretaceous: Evidence from the Furongshan granite porphyry and mafic microgranular enclaves. Journal of Asian Earth Sciences, 111, 72-78. https://doi.org/10.1016/j.jseaes.2015.08.010.
White, A. J. R., and Chappell, B. W., 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society American Memoir  V. 159: 21-34, https://doi.org/10.1130/MEM159-p21
White, A. j. R., Chappell, B. W., and Wyborn, D., 1999. Application of the restite model to the Deddick Granodiorite and its enclaves- a reinterpretation of the observations and data of Maas. R., Nichollas, I. A. and legg. C., 1992. Journal of Petrology, 40, 413-421. https://doi.org/10.1093/petroj/40.3.413.
Wilson, M., 1989. Igneous Petrogenesis. A global Tectonic Approach, Unwin Hyman, 466 p., https://doi.org/10.1007/978-1-4020-6788-4.
Xiong, F.H., Ma, C.Q., Zhang, J.Y., and Liu, B., 2011. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: implications for magma mixing during subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4), 211-224. DOI:10.1007/s00710-011-0187-1.
Zanetti, A., Tiepolo, M., Oberti, R., and Vannucci, R., 2004. Trace-element partitioning in olivine: modeling of a complete data set from a synthetic hydrous basanite melt, Lithos 75(1-2), P. 39-54, DOI:10.1016/j.lithos.2003.12.022.
Zhao, K.D., Jiang, S.Y., Yang, S.Y., Dai, B. Z., and Lu, J.J., 2012. Mineral chemistry, trace elements and Sr\Nd\Hf  isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22, 310-324. DOI:10.1016/j.gr.2011.09.010.