نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 شرکت معدنی احسان پویا، تهران، ایران

چکیده

ناحیه زاغ‌دره در مجموعه افیولیتی صوغان - آبدشت از کمپلکس آمیزه رنگین اسفندقه- فاریاب در جنوب‌خاوری زون سنندج- سیرجان، با رخنمون‌های گسترده از گدازه‌های مافیک-متوسط و یک توده نفوذی فلسیک معرفی می‌شود. سنگ‌های آتشفشانی، کالک‌آلکالن تا تولئیتی و متالومین هستند و در نمودار بهنجارشده نسبت به کندریت، تهی‌شدگی نسبی در عناصر خاکی کمیاب سبک و الگوی کمابیش تخت برای عناصر خاکی کمیاب سنگین به نمایش می گذارند؛ نسبت La/Yb)N) برای بیشتر نمونه‌ها کمتر از یک است. سنگ‌های آتشفشانی زاغ‌دره، از نظر شیمیایی قابل مقایسه با مجموعه‌های آتشفشانی زون فرافرورانش هستند. توده نفوذی زاغ‌دره، بافت چیره پورفیری دارد که با درشت‌بلور‌‌های پلاژیوکلاز و کوارتز، و کمتر از آن هورنبلند، در خمیره‌ای کوارتز- فلدسپاتی خودنمایی می‌کند. نمونه‌های معرف از این توده، در نمودار نورماتیو An-Ab-Or در محدوده تونالیت-ترونجمیت قرار می‌گیرند. توده نفوذی زاغ‌دره، کالک‌آلکالن تا تولئیتی و پرآلومین است و با غنی‌شدگی نسبی از Na2O و CaO و تهی‌شدگی از K2O و Rb و دیگر عناصر لیتوفیل با شعاع یونی بزرگ، و همچنین نسبت پایین K2O/Na2O و نسبت بسیار پایین Rb/Sr و تهی‌شدگی از عناصر خاکی کمیاب سبک LREE مشخص می‌شود که از ویژگی‌های معمول پلاژیوگرانیت‌های اقیانوسی است. نتایج حاصل و مقایسه آن با دیگر مجموعه‌های افیولیتی نشان می‌دهد که رخداد توده‌های پلاژیوگرانیتی با ویژگی‌های کانی‌شناسی و ژئوشیمیایی کمابیش مشابه، پدیده‌ای تکرارشونده در مجموعه‌های افیولیتی زون‌های فرافرورانش و همبسته با فرایندهای موثر در زایش و تحول این مجموعه‌ها است. 
 

کلیدواژه‌ها

موضوعات

احمدی‌پور، ح.، 1379، پترولوژی و ژئوشیمی کمپلکس‌های اولترامافیک- مافیک صوغان، آبدشت، شمال غرب دولت آباد بافت، رساله دکتری، دانشگاه تربیت مدرس.   
حیدری، خ.، نصرآبادی، م. و نوزعیم، ر.، 1395، کانی‌شناسی، ژئوشیمی و پتروژنز توده‌های پلاژیوگرانیتی موجود در متاگابروهای مجموعه افیولیتی جنوب مهریز (جنوب‌غرب یزد)، مجله علوم‌زمین خوارزمی، شماره 1، 13-20 .
عزیزان، ح. و نادری، ن.، 1385،  نقشه زمین‌شناسی دولت‌آباد، مقیاس 1:10000، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
علیزاده، ا.، آروین، م. و درگاهی، س.، 1391، زمین‌شیمی و پتروژنز پلاژیوگرانیت‌های مجموعه افیولیتی نیریز- ایران: با تاکیدی بر منشا آنها، مجله علمی- پژوهشی پترولوژی، سال سوم، شماره دوازدهم، زمستان 1391، 1-14.
گلستانی، م.، درگاهی، س. و آروین، م.، 1392، منشا پلاژیوگرانیت‌ها و گابروهای افیولیت ملانژ بافت؛ واقع در جنوب‌غرب کرمان، مجله بلورشناسی و کانی‌شناسی ایران، سال بیست و یکم، شماره 4، 625-636.
ناظم‌زاده، م. و رشیدی، ع.، 1385، نقشه زمین‌شناسی دهسرد (بزار)، مقیاس 1:100000، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
ناظم‌زاده، م.، روشن‌روان، ج. و عزیزان، ح.، 1375، نقشه زمین‌شناسی باغات، مقیاس 1:100000، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
سبزه‌ای‌، م.، 1375، نقشه زمین‌شناسی حاجی‌آباد، مقیاس 1:250000، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
Ahmadipour, H., 2000. Petrology and Geochemistry of Soghan Ultramafic- Mafic complex, Abdasht, North-West Dowlat abad, Baft, Tarbiat Modarres University, Ph.D.  Thesis. (in persian)
Ahmadipour, H., Sabzehei, M., Whitechurch, H., Rastad, E., and Emami, M.H., 2003. Soghan complex as an evidence for paleospreading center and mantle diapirism in Sanandaj-Sirjan zone (South-east Iran), Journal of sciences, Islamic republic of Iran, 14(2), 157-172.
Alizadeh, E., Arvin, M., and Dargah, S., 2014. Origin of plagiogranites and gabbros in the Baft ophiolitic mélange; southwest of Kerman . www.ijcm.ir 2014; 21 (4) :625-636 URL: http://ijcm.ir/article-1-268-fa.html. (in persian)
Azizan, H., and Naderi, M., 2007. Geological map of Dowlat Abad, 1: 100000. Geological survey of Iran. (in persian)
Allen, M. B., 2009. Discussion on the Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, West Iran: a marker of the end of collision in the Zagros Orogen, Journal of the Geological Society, 166, 53–69.
Amri, I., Benoit, M., and Ceuleneer, G., 1996. Tectonic setting for the genesis of oceanic plagiogranites: evidence from a paleo-spreading structure in the Oman Ophiolite, Earth and Planetary Science Letters, 139, 177–194. DOI: 10.1016/0012-821X(95)00233-3.
Alt, J. C., 1995. Sulfur isotopic profile through the oceanic crust: Sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration, Geology, 23 (7). 585-588. DOI: 10.1130/0091-7613(1995)023<0585:SIPTTO>2.3.CO;2.
Barton, M.D., and Young, S., 2002. Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin. In E.S. Grew (ed.), Beryllium: Mineralogy, Petrology and Geochemistry, Reviews in Mineralogy and Geochemistry, 50, 591-691. DOI:10.2138/rmg.2002.50.14.
Beard, J.S., 1998. Polygenetic tonalite-trondhjemite-granodiorite (TTG) magmatism in the Smartville complex, northern California with a note on LILE depletion in plagiogranites, Mineral Petrol, 64, 15–45. DOI:10.1007/BF01226562.
Brophy, J.G., 2009. La–SiO2 and Yb–SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite, Contrib. Mineral. Petrol., 158, 99. DOI:10.1007/s00410-008-0372-3.
Chappell, B., and White, A., 1974. Two contrasting granite types, Pacific geology 8(2), 173-174.
Chen, Y.H., Niu, Y.L., Shen, F.Y., Gao, Y.J., and Wang, X.H., 2020. New U-Pb zircon age and petrogenesis of the plagiogranite, Troodos ophiolite, Cyprus, Lithos 362-363, 105472. DOI:10.1016/j.lithos.2020.105472.
Coleman, R. G., and Donato, M. M., 1979. Oceanic plagiogranite revisited, in: Barker, F. (Ed.), trondhjemites, dacites, and related rocks, Elsevier, Amsterdam, 149–168. doi:10.1016/b978-0-444-41765-7.50010-1.
Coleman, R. G., and Peterman, Z. E., 1975. Oceanic plagiogranite. Journal of Geophysical Research 80, 1099–1108. https://doi.org/10.1029/JB080i008p01099.
Cox, D., Kerr, A.C., Hastie, A.R., and Ishaq Kakar, M., 2019. Petrogenesis of plagiogranites in the Muslim Bagh Ophiolite, Pakistan: implications for the generation of Archaean continental crust, Geological Magazine 156, 874-888. DOI: https://doi.org/10.1017/S0016756818000250.
Dick, H. J. B., Natland, J. H., Alt, J. C., Bach, W., Bideau, D., Gee, J. S., and Haggas, S., 2000. A long in situ section of the lower crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge, Earth and Planetary Science Letters 179, 31–51.
Dilek, Y., and Furnes, H., 2017. Geochemical characterization of intermediate to silicic rocks in the global ophiolite record. ACTA. Geol. Sin-Engl. 91, 8–9. DOI:10.1111/1755-6724.13151.
Dimitrijevic, M.D., 1973. Geology of Kerman region. Geological Survey of Iran, Report No. 52, 334pp.
Dokuz, A. E., Tanyolu, S., and Genç, S., 2006. A mantle-and a lower crust-derived bimodal suite in the Yusufeli (Artvin) area, NE Turkey: trace element and REE evidence for subduction-related rift origin of Early Jurassic Demirkent intrusive complex.» International Journal of Earth Sciences 95(3), 370-394. DOI: 10.1007/s00531-005-0046-6.
Erdmann, M., Fischer, L. A., France, L., Zhang, C., Godard, M., and Koepke, J., 2015. Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study, Contributions to Mineralogy and Petrology 169, 1–28. DOI:10.1007/s00410-015-1136-5.
Flagler, P.A., and Spray, J.G., 1991. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones, Geology 19 (1), 70–73.  https://doi.org/10.1130/0091-7613(1991)019<0070:GOPBAA>2.3.CO;2.
France, L., Koepke, J., Ildefonse, B., Cichy, S. B., and Deschamps, F., 2010. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations, Contributions to Mineralogy and Petrology 160, 683-704. DOI:10.1007/s00410-010-0502-6.
Freund, S., Haase, K.M., Keith, M., Beier, C., and Garbe-Schönberg, D., 2014. Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos ophiolite, Cyprus. Contrib. Miner. Petrol. 167 (2), 978.  DOI:10.1007/s00410-014-0978-6.
Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics, 394 pp. Springer-Verlag Berlin· Heidelberg. https://doi.org/10.1007/978-3-642-68012-0.
Golestani, M., Dargahi, S., Arvin, M., 2014. Origin of plagiogranites and gabbros in the Baft ophiolitic mélange; southwest of Kerman . www.ijcm.ir 2014; 21 (4) :625-636. (in persian)
Guo, Z. M., Wilson, J., and Liu, 2007. Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust, Lithos 96(1-2), 205-224. DOI:10.1016/j.lithos.2006.09.011.
Griffin, W.L., O’Reilly, S.Y., Afonso, J. C., and Begg, G. C., 2009. The Composition and Evolution of Lithospheric Mantle: A Re-evaluation and its Tectonic Implications, J. Petrol. 2009, 50, 1185–1204. https://doi.org/10.1093/petrology/egn033.
Hassanzadeh, J., and Wernicke, B. P., 2016. The Neotethyan Sanandaj–Sirjan zone of Iran as an archetype for passive margin-arc transitions, Tectonics, 35, 586–621. https://doi.org/10.1002/2015TC003926.
Heidari, K., Nasrabadi, M., Nozaeem, R., and Gholizadeh, K., 2016. Mineralogy, geochemistry and petrogenesis of plagiogranitic intrusions from ophiolitic complex of southern Mehriz (SW Yazd). Journal title 2016; 2 (1) :13-32 URL: 
http://gnf.khu.ac.ir/article-1-2548-fa.html. (in persian)
Huang, F., Xu, J., Chen, J., Kang, Z., and Dong, Y., 2015. Early Jurassic volcanic rocks from the Yeba formation and Sangri group: products of continental marginal arc and intraoceanic arc during the subduction of Neo- Tethys Ocean. Acta Petrol. Sin. 31, 2089–2100.
Irvine, T., W., and Baragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences 8(5), 523-548. https://doi.org/10.1139/e71-055.
Jowitt, S.M., Keays, R.R., Jackson, P.G., Hoggart, C.R., and Green, A.H., 2012. Mineralogical and geochemical controls on the formation of the Woods Point dike swarm, Victoria, Australia: Evidence from the Morning Star dike and implications for sourcing of Au within orogenic gold systems: Economic Geology, 107, 251–273. 10.2113/econgeo.107.2.251.
Kakar, M. I., Kerr, A. C., Mahmood, K., Collins, A. S., Khan, M., and McDonald, I., 2014. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology, Lithos 202–203, 190–206. http://dx.doi.org/10.1016/j.lithos.2014.05.029.
Koepke, J., Seidel, E., and Kreuzer, H., 2002. Ophiolites on the Southern Aegean islands Crete, Karpathos and Rhodes: composition, geochronology and position within the ophiolite belts of the Eastern Mediterranean, Lithos 65:183–203. https://doi.org/10.1016/S0024-4937(02)00165-2.
Koepke, J., Feig, S. T., Snow, J., and Freise, M., 2004. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions to Mineralogy and Petrology 146, 414–432. https://doi.org/10.1007/s00410-003-0511-9.
Koepke, J., Berndt, J., Feig, S. T., and Holtz, F., 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology 153, 67–84. DOI:10.1007/s00410-006-0135-y.
Lopez-Escobar, L., 1974. Plutonic and volcanic rocks from Central Chile (33o-42oS): geochemical evidence regarding their petrogenesis, Ph.D. thesis, Massachusetts Institute of Technology, 270 p. http://hdl.handle.net/1721.1/54244.
Maniar, P. D., and Piccoli, P. M., 1989. Tectonic discrimination of granitoids, Geological society of America bulletin, 101(5), 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
Marien, C.S., Hoffmann, J.E., Garbe-Schönberg, C.D., and Münker, C., 2019. Petrogenesis of plagiogranites from the Troodos Ophiolite complex, Cyprus. Contrib. Mineral. Petrol 174 (4), 35. DOI:10.1007/s00410-019-1569-3.
McDonough, W.F., and Sun, S. S., 1995. Composition of the Earth, Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4.
Middlemost, E. A., 1994. Naming materials in the magma/igneous rock system, Earth-Science Rev. 37 (3-4): 215-224. http://dx.doi.org/10.1016/0012-8252(94)90029-9.
Middleburg, J. J., Van der Weijden, C. H., and Woittiez, J. R. W., 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68, 253-273. https://doi.org/10.1016/0009-2541(88)90025-3.
Milovanovic, D., Sreckovic-Batocanin, D., Savic, M., and Popovic, D., 2012. Petrology of plagiogranite from Sjenica, Dinaridic Ophiolite Belt (southwestern Serbia), Geologica Carpathica 63, 97–106. DOI: https://doi.org/10.2478/v10096-012-0008-4.
Mohajjel, M., Fergusson, C.L., and Sahandi, M.R., 2003. Cretaceous-Tertiary Convergence and Continental Collision, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 21, 397-412. https://doi.org/10.1016/S1367-9120(02)00035-4.
Najafzadeh, A., and Ahmadizadeh, H., 2015. Geochemistry of Platinum-group elements and mineral composition in chromitites and associated rocks from the Abdasht ultramafic complex, Kerman, Southeastern Iran.2015. Ore Geology Reviews 75. DOI: 10.1016/j.oregeorev. 12.018
Nazemzade, M., and Rashidi, A., 2007. Geological map of Dehsard (Bezar), 1: 100000. Geological survey of Iran. (in persian)
Nazemzade, M., Roshanravan, j., and Azizan, H., 1996. Geological map of  Baghat, 1: 100000. Geological survey of Iran. (in persian)
Niu, Y.L., Gilmore, T., Mackie, S., Greig, A., and Bach, W., 2002. Mineral chemistry, wholerock compositions, and petrogenesis of leg 176 gabbros: Data and discussion, Proc. ODP Sci. Results 176, 1–60. DOI:10.2973/odp.proc.sr.176.011.2002.
Nurlu, N., Türkmen, S., Simsek, G., and Stepanov, A.S., 2018. Geochemistry and zircon U-Pb geochronology constrains late Cretaceous plagiogranite intrusions in Mersin ophiolite complex (southern Turkey), Arabian J. Geosci. 11, 745. DOI:10.1007/s12517-018-4120-3.
O’Connor, J.T., 1965. A classification of quartz rich igneous rock based on feldspar ratios. US Geological Survey, 525B, B79-B84.
Patino Douce, A. E., 1996. Effects of pressure and H2O contents on the composition of primary crustal melts, Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 11-21.
Pearce, J. A., Harris, N. B., and Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956.
Pearce, J. A., and Cann, J.R., 1973. the classic Ti-Zr-Y diagram of Pearce and Cann (1973).
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos 100, 14-48. https://doi.org/10.1016/j.lithos.2007.06.016.
Peigambari, S., Ahmadipour, H., Stosch, H.G., and Faliran, D., 2011. Evidence for multistage mantle metasomatism at the Dehsheikh peridotite massif and chromite deposits oe the Orzuieh coloured mélange belt, South-eastern Iran, Ore Geology Reviews, 39, 245- 264, DOI:10.1016/j.oregeorev.2011.03.004.
Rapp, R.P., Watson, E.B., and Miller, C.F., 1991. Partial melting of amphibolite, eclogite and the origin of Archean trondhjemites and tonalities, Precambrian, Res., 51, 1-25. https://doi.org/10.1016/0301-9268(91)90092-O.
Rollinson, H., 2009. New models for the genesis of plagiogranites in the Oman Ophiolite, Lithos 112, 603–614.  DOI:10.1016/j.lithos.2009.06.006.
Rona, P. A., 1988. Hydrothermal Mineralization at Oceanic Ridges. Can. Mineral. 26, 431–465. 
Sabzeie, M., 1996. Geological map of Haji Abad, 1: 250,000. Geological survey of Iran. (in persian)
Seyfried, W.E., Berndt, M E., and Seewald, J.S., 1988. Hydrothermal alteration processes at mid-ocean ridges: constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. JournalCanadian Mineralogist. Pages (from-to)787-804.
Soltani-Nezhad, M., Ahmadipour, H., Moradian, A., Zahedi, A., and Nakashima, K., 2021. Investigation of Petrological Characteristics of The Upper Mantle in Hadji-Abad Ophiolitic Complex (South of Iran): Based on Mineral Chemistry, Journal of Sciences, Islamic Republic of Iran 32(2): 143-157. https://doi.org/10.22059/jsciences.2020.303150.1007530.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7): 1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D.
Sun, S. S., and McDonough, W. S., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society, London, Special Publications, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19.
Torabi, G., Morishita, T., and Arai, S., 2019. Two types of plagiogranite from Mesozoic Ashin Ophiolite (Central Iran): a mark of tectonic setting change from Jurassic to Cretaceous, Geotectonics, 53 (1), 110–124. DOI:10.1134/S0016852119010084.
Winchester, J., and Floyd, P., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical geology 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2.
Wu, H., Li, C., Yu, Y.P., and Chen, J.W., 2018. Age, origin, and geodynamic significance of high-Al plagiogranites in the Labuco area of central Tibet, Lithosphere, 10 (2), 351–363. https://doi.org/10.1130/L711.1.
Xu, Y., Liu, C.Z., Chen, Y.I., Guo, S., Wang, J.G., and Sein, K., 2017. Petrogenesis and tectonic implications of gabbro and plagiogranite intrusions in mantle peridotites of the Myitkyina ophiolite, Myanmar, Lithos, 284-285, 180–193. DOI: 10.1016/j.lithos.2017.04.014.