نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

کانسارهای مس پورفیری پرکام (سارا) و آبدر در ارتباط با استوک های دیوریتی - کوارتزدیوریتی در بخش جنوبی کمربند ماگمایی 
ارومیه - دختر، واقع شده اند. در کانسار پرکام دگرسانی های پتاسیک، پتاسیک - فیلیک، بیوتیتیک، فیلیک، آرژیلیک و پروپیلیتیک توسعه یافته اند، در مقابل در کانسار آبدر گسترش دگرسانی پتاسیک ناچیز، اما پهنه دگرسانی فیلیک دارای گسترش قابل توجه است. هدف از این مطالعه بررسی شیمی کانی های سریسیتی و سولفیدی (پیریت و کالکوپیریت) در زون دگرسانی فیلیک این کانسارها است. در این راستا نمونه برداری از گمانه های حفاری انجام شد و در نهایت 9 نمونه منتخب با استفاده از آنالیز ریزکاونده الکترونی (EMPA) مورد آنالیز قرار گرفت. نتایج نشان داد تمرکز عناصر Zn ،Ag ،Au و As در نمونه های کالکوپیریت (به ترتیب با میانگین 0/70، 0/007، 0/012 و 0/043 درصد وزنی) به نسبت بیشتر است. در مقابل عناصر Re ،Te ،Co و Mo عمدتا در نمونه‌های پیریت (به ترتیب با میانگین 0/01، 0/003، 0/09 و 0/07 درصد وزنی)  تمرکز دارند. در این میان رخداد طلا در نمونه های پیریت زون دگرسانی فیلیک سامانه های مس پورفیری  آبدر و پرکام بسیار شبیه به کانسار میدوک بوده و نشان‌دهنده رخداد طلا به صورت ادخال یا نانوذرات طلای طبیعی (احتمالا به صورت Au0 و یا تلورید طلا) می باشد. در نمونه های سریسیت هر دو کانسار، میکاهای ریزدانه،  غنی از پتاسیم هستند. افزون بر این نمونه‌ها دارای روند افزایش جانشینی Si و نیز جانشینی عناصر +Fe2+ ،Mg 2 و +Al3  در مکان‌های هشت‌وجهی می باشد که مبین روند تغییر ترکیب به سمت سلادونیت می باشد. همانند دیگر کانسارهای مس پورفیری دارای کانه زایی قابل توجه (مانند Copper Flat و Copper Cliff)، نمونه‌های دگرسانی فیلیک مربوط به کانسارهای مورد مطالعه، نشان‌دهنده روند جانشینی شرماکیت می‌باشند که به دلیل افزایش بار مثبت در جایگاه چهاروجهی به دلیل روند افزایشی جانشینی Si در ساختار میکاهای سفید می‌باشد.

کلیدواژه‌ها

موضوعات

محمدی‌لقب، ح. و تقی‌پور، ن.، 1390، تکامل فیزیکوشیمیایی سیال گرمابی در کانسار مس پورفیری سارا (پرکام)، استان کرمان، مجله زمین‌شناسی کاربردی پیشرفته، دانشگاه شهید چمران اهواز، شماره 1، جلد 1، صفحه 11 تا 26.https://journals.scu.ac.ir /article_11540.html.
Asadi, S., 2018. Triggers for the generation of post-collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: New constraints from elemental and isotopic (Sr–Nd–Hf–O) data, Gondwana Research, 64, 97-121. https://doi.org/10.1016/j.gr.2018.06.008.
Asadi, S., Moore, F., and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review, Earth-Science Reviews, 138(1), 25-46.  https://doi.org/10.1016/j.earscirev.2014.08.001.
Ayres, R.U., Ayres, L., and Råde, I., 2002. The Life Cycle of Copper, Its Co-products and Byproducts, Eco-Efficiency in Industry and Science, 265p. (http://pubs.iied.org/pdfs/G00740.pdf).
Castillo, P.R., 2012. Adakite petrogenesis, Lithos, 134, 304–316. https://doi.org/10.1016/j.lithos.2011.09.013.
Cioacă, M.E., Munteanu, M., Qi, L., and Costin, C., 2014. Trace element concentrations in porphyry copper deposits from Metaliferi Mountains, Romania: A reconnaissance study, Ore Geology Reviews, 63, 22–39. https://doi.org/10.1016/J.OREGEOREV.2014.04.016.
Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V., and Gilbert, S., 2011. Minor and trace elements in bornite and associated Cu– (Fe)–sulfides: LA-ICP-MS study, Geochimica et Cosmochimica Acta, 75, 6473–6496. https://doi.org/10.1016/j.gca.2011.08.021.
Cox, D.P., and Singer, D.A., 1988. Distribution of gold in porphyry copper deposits. US Geological Survey, Open-file Report. 10.3133/ofr8846.
Deer, W.A., Howie, R.A., and Zussman, J., 2013. An introduction to the rock-forming Minerals, 3rd edition. Stevenage, Berforts Information Press 498 p. 9780903056434.
Dimitrijevic, M., 1973. Geology of Kerman region, Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd-Yugoslavia, Geological Survey of Iran, Report No. Yu/52, 334 p.
Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D.R, Meinert, L., and Bouhier, V., 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition, Ore Geology Reviews, 66, 366–387. https://doi.org/10.1016/j.oregeorev.2014.10.022.
Ghasemi, A., and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran), Journal of Asian Earth Sciences, 26, 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003 6.
Hemley, J.J., and Hunt, J.P., 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II. Some General Geologic Applications, Economic Geology, 87, 23–43. https://doi.org/10. 2113/gsecongeo.87.1.23.
Maydagan, L., Franchini, M., Impiccini, A., and Lentz, D.R., 2016. Phyllosilicates geochemistry and distribution in the Altar porphyry Cu- (Au) deposit, Andes Cordillera of San Juan, Argentina: Applications in exploration, geothermometry, and geometallurgy, Journal of Geochemical Exploration, 167, 83-109. https://doi.org/10.1016/j.gexplo.2016.05.002.
McInnes, B.I.A., Evans, N.J., Belousova, E., and Griffin, W.L., 2003. Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes, CSIRO Scientific Research Report, No: 41.
McInnes, B.I.A., Evans, N.J., Fu, F.Q., Garwin, S., Belousova, E., Griffin, W.L., Bertens, A., Sukama, D., Permanadewi, S., Andrew, R.L., and Deckart, K., 2005. Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu–Mo–Au deposits, in. In: Porter, T.M. (Ed.), Super, Porphyry Copper and Gold Deposits: A Global Perspective, 1st. PGC Publishing, Adelaide, pp. 1–16.
Miller, C.F., Stoddard, E.F., Larry, J.B., and Wayne, A.D., 1981. Composition of plutonic muscovites: genetic implications, 
Canadian Mineralogist, 19(1), 25-34. https://pubs.geoscienceworld.org/canmin/article-abstract/19/1/25/11497/Composition-of-plutonic-muscovite-genetic.
Mohammadilaghab, H., and Taghipour, N., 2011. Physico - chemical evolution of hydrothermal fluid at Sara (Parkam) porphyry copper deposit, Kerman Province, Advanced Applied Geology, 1, 11-24. (In Persian)
Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems, Springer, Geological Survey of Western Australia, p 1250.
Reich, M., Deditius, A., Chryssoulis, S., Li, J-W., Ma, Ch-Q., Parada, M.A., Barra, F., and Mittermayr, F., 2013a. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study, Geochimica et Cosmochimica Acta, 104, 42–62. https://doi.org/10.1016/j.gca.2012.11.006.
Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C., Chryssoulis, S.L., and Ewing, R.C., 2005. Solubility of gold in arsenian pyrite, Geochimica et Cosmochimica Acta, 69(11), 2781–2796. https://doi.org/10.1016/j.gca.2005.01.011.
Reich, M., Palacios, C., Barra, F., and Chryssoulis, S., 2013b. Invisible silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile, European Journal of Mineralogy, 25(3), 453–460. https://doi.org/10.1127/ 0935-1221/2013/0025-2287.
Rezaei, M., 2017. Effective parameters in mineralization potential of economic and subeconomic porphyry copper deposits in Urumieh- Dokhtar magmatic zone: using geochemical and fluid inclusion studies. Ph.D thesis, Shahid Chamran University of Ahvaz, 204 pp.
Rezaei, M., and Zarasvandi, A., 2022. Combined Feldspar-Destructive Processes and Hypogene Sulfide Mineralization in the Porphyry Copper Systems: Potentials for Geochemical Signals of Ore Discovering. Iranian Journal of Science and Technology, Transactions A: Science 46, 1413–1424. https://doi.org/10.1007/s40995-022-01350-1.
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision, Ore Geology Reviews, 70, 323-345. https://doi.org/10.1016/j.oregeorev.2014.11.009.
Richards, J.P., Spell, T., Rameh, E., Razique, A., and Fletcher, T., 2012. High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan, Economic Geology, 107(2), 295-332. https://doi.org/10.2113/econgeo.107.2.295.
Saric, A., Djordjevic, M., and Dimitrijevic, M.N., 1972. Geological map of Shahr-Babak, Scale 1/100000, Geological Survey of Iran, Tehran, Iran. Geological Society of America, Vol: 32, p.
Seedorff, E., Dilles, J.H., Proffett, J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, D.A., and Barton, M.D., 2005. Porphyry deposits: Characteristics and origin of hypogene features, Economic Geology, 100th Anniversary, 251. https://doi.org/10.5382/AV100.
Shafiei, B., and Shahabpour, J., 2008. Gold Distribution in Porphyry Copper Deposits of Kerman Region, Southeastern Iran, Journal of Sciences, Islamic Republic of Iran, 19(13) 247-260. https://jsciences.ut.ac.ir/article_31898.html
Shafiei, B., Haschke, M., and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44, 265–283. https://doi.org/10.1007/s00126-008-0216-0.
Sillitoe, R.H., 2010. Porphyry copper systems, Economic Geology, 105, 3–41. http://dx.doi.org/10.2113/gsecongeo.105.1.3.
Taghipour, N., Aftabi, A., and Mathur, R., 2008. Geology and Re-OS geochronology of Mineralization of the Miduk Poyphyry Deposit, Resource Geology, 58 (2), 143-160. https://doi.org/10.1111/j.1751-3928.2008.00054.x
Ulrich, T., and Heinrich, C.A., 2001. Geology and alteration geochemistry of the Porphyry Cu–Au deposit at Bajo de la Alumbrera, Argentina. Economic Geology, 97, 1865–1888. https://doi.org/10.2113/gsecongeo.96.8.1719.
Uribe-Mogollon, C., and Maher, K., 2018. White Mica Geochemistry of the Copper Cliff Porphyry Cu Deposit: Insights from a Vectoring Tool Applied to Exploration, Economic Geology, 113, 1269–1295. https://doi.org/10.5382 /econgeo.2018.4591.
Wallace, C.J., and Maher, K.C., 2019. Phyllic Alteration and the Implications of Fluid Composition at the Copper Flat Hydrothermal System, New Mexico, USA, Ore Geology Reviews, 104, 273-293. https://doi.org/10.1016/ j. oregeorev. 2018.11.009.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist, 95, 185–187. https://doi.org/10.2138/am.2010.3371.
Zarasvandi, A., Liaghat, S., and Zentilli, M., 2010. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposites, central Iran, International Geology Review, 47(6), 620-646. https://doi.org/10.2747/0020-6814.47.6.620.
Zarasvandi, A., Rezaei, M., Raith, J., Lentz, D., Azimzadeh, A.M., and Pourkaseb, H., 2015b. Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran, Journal of Asian Earth Sciences, 111(1), 175-191. 
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S, Saed, M., and Lentz, D.R., 2018. Metal endowment reflected in chemical composition of silicates and sulfide s of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et Cosmochimica Acta, 223, 36-59. https://doi.org/10.1016/j.gca.2017.11.012