نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

کانسار سرب و روی چاه­‌نار در جنوب دشت روتشون (رچان) و 110 کیلومتری جنوب‌باختر شهرستان بافت و در پهنه سنندج- سیرجان واقع شده است. کانی­‌سازی به شکل دیرزادی درون مرمرهای کلسیتی-دولومیتی کمپلکس روتشون تشکیل شده و دارای کنترل ساختاری است. همبرزایی کانیایی شامل گالن و مقادیر کمی پیریت و اسفالریت است و با کانی‌­های باطله کوارتز و مقادیر ناچیزی کلسیت و دولومیت، بافت­‌های رگه- رگچه­‌ای، پرکننده فضای خالی، برشی و پراکنده همراهی می­‌شود. گالن به‌صورت درشت‌بلور و بافت کوبواکتاهدرال و ریزبلور دیده می­‌شود. سیلیسی­‌شدن و کربناتی‌شدن ، مهم‌ترین دگرسانی­‌های سنگ میزبان هستند. شیمی کانه گالن نشان می­‌دهد که گالن به‌طور نسبی از نقره، آرسنیک، روی و کادمیم غنی و از بیسموت و قلع فقیر است.  نسبت Sb/Bi در کانی گالن نزدیک 3  است که ویژگی کانسارهای دما پایین است. نوع سنگ میزبان، دیرزاد و چینه‌کران بودن کانسار، جایگیری رگه­‌های معدنی در گسل­‌های پس از رسوب‌گذاری، بافت و ساخت و نوع کانه­‌ها و کانی­‌های باطله، عدم ارتباط معنی­‌دار کانی­‌سازی با فعالیت­‌های آذرین و شیمی کانی گالن، بیانگر تشکیل کانسار چاه‌نار در شرایطی مشابه با کانسارهای  نوع MVT است، هر چند اختلافاتی را نیز با این رده کانساری دارد.

کلیدواژه‌ها

موضوعات

صفری لنگرودی، م.، 1371، خاستگاه کانسارهای سرب و روی با بستر کربناته در منطقه سه چاه- روتشون (جنوب غرب بافت- استان کرمان). پایان نامه کارشناسی ارشد زمین­‌شناسی اقتصادی، دانشگاه شیراز، 400 ص.
قربانی ده نوی، م.، 1396، اطلس زمین­‌شناسی و منابع معدنی شهرستان بافت، سازمان زمین­‌شناسی و اکتشافات معدنی کشور، 161 ص.
کریم‌­پور، م.ح.، ملک‌­زاده­‌شفارودی، آ.، اسماعیلی سویری، ع.، شعبانی، س.، الاز، ج. و استرن، چ.، 1396، زمین­‌شناسی، کانی­‌سازی، شیمی­ کانی­‌ها، شیمی و منشأ محلول کانه‌­دار در ناحیه معدنی سرب و روی ایرانکوه، جنوب اصفهان، مجله زمین‌­شناسی اقتصادی، جلد 9، شماره2 ،ص267-294.
نوازی، م.، ناظم‌­زاده‌­شعاعی، م. و عزیزان، ح .،1379، یافته­‌های نوین پالئونتولوژیکی در سنگ‌­های دگرگونه زون سنندج- سیرجان (جنوب بافت)، گزارش مقدمانی، مدیریت زمین‌­شناسی و اکتشافات معدنی جنوب­‌خاوری؛ 10ص.
Annels, A.E, O’Donovan, G., and Bowles, M ., 2003. New ideas concerning the genesis of the Angouran Zn–Pb deposit, NW Iran. Abstracts of the 26th Mineral Deposits Studies Group, University of Leicester, Leicester, pp 11–12.
Bethke, P.M., and Barton, P.B., 1971. Distribution of some minor elements between coexisting sulfide minerals. Econ. Geol. 66 (1), 140–163. DOI: 10.2113/gsecongeo.66.1.140.
Burkhard, M., 1993, Calcite twins, their geometry, appearance and significance as stress–strain markers and indicators of tectonic regime: a review. Journal of Structural Geology 15: 351–368. https://doi.org/10.1016/0191-8141(93)90132-T.
Cave, B., Lilly, R., and Barovich, K., 2020. Textural and geochemical analysis of chalcopyrite, galena and sphalerite across the Mount Isa Cu to Pb-Zn transition: Implications for a zoned Cu-Pb-Zn system. Ore Geol Rev 124. https://doi.org/10.1016/j. oregeorev.2020.103647.
Chutas, N.I., Kress, V.C., Ghiorso, M.S., and Sack, R.O., 2008. A solution model for high-temperature PbS-AgSbS2-AgBiS2 galena. Am Mineral 93 (10), 1630–1640. https://doi.org/10.2138/am.2008.2695.
Cook, N.J., Ciobanu, C.L., Wagner, T., and Stanley, C.J., 2007. Minerals of the system Bi- Te-Se-S related to the tetradymite archetype: Review of classification and compositional variation. The Canadian Mineralogist, 45(3): 665–708.  http://dx.doi.org/10.2113/gscanmin.45.4.665.
Dana, C.D.P., Agangi, A., Idrus, A., Lai, C.-K., and Simbolon, D.R., 2022. Bi-Ag-Sulfosalts and Sulfoarsenides in the Ruwai Zn-Pb-Ag Skarn Deposit, Central Borneo, Indonesia. Minerals, 12, 1564. https://doi.org/10.3390/min12121564.
Ebrahimnejad, M., Arvin,M., and Dagahi, S., 2020. Petrogenesis of Dehsard felsic rocks in the southwest of Kerman, Iran: Inference for the evolution of Sanandaj-Sirjan zone, Journal of African Earth Sciences172,  https://doi.org/10.1016/j.jafrearsci.2020.103978.
Ehya, F., Lotfi, M., and  Rasa, I. 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study, Journal of Asian Earth Sciences 37 , 186–194,  https://doi.org/10.1016/j.jseaes.2009.08.007.
Evans, A.M., 1993. Ore Geology and Industrial Minerals: An Introduction. Blackwell Scientific Publication, 390 p.
Fernandez, P.F.J., and Izard, M.A., 2005. Trace element content in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). Journal of Geochemical Exploration, 86(1): 1–25. http://dx.doi.org/10.1016/j.gexplo.2005.03.001.
Foord, E.E., Shawe, D.R., and Conklin, N.M., 1988. Coexisting galena, PbSss and sulfosalts: evidence for multiple episodes of mineralization in the Round Mountain and Manhattan gold districts, Nevada. The Canadian Mineralogist, 26(2): 355–376.
George, L., Cook, N.J., Ciobanu, C.L., and Wade, B.P., 2015. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am. Mineral 100 (2–3), 548.–569. https://doi.org/10.2138/am-2015-4862.
George, L.L., Cook, N.J., Ciobanu, C.L., 2016. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev. 77, 97–116. https://doi.org/10.1016/j.oregeorev.2016.02.009.
Ghasemi, A., and Talbot, C. J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran): Journal of Asian Earth Sciences, V. 26, p. 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003.
Ghazban, F., Mcnutt R. H., and Schwarcz, H. P., 1994. Genesis of sediment- hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan Area, West- Central Iran , Economic Geology, 89, 1262-1278. https://doi.org/10.2113/gsecongeo.89.6.1262.
Ghorbani Dehnavi, M., 2016. Atlas of geology and mineral resources of Baft city, Geological Survey of Iran,, 161 p (In Persian).
Goodfellow, W.D., and Lydon, J.W., 2007. Sedimentary exhalative (SEDEX) deposits, in ed., mineral deposits of Canada: A Synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p. 163-183.
Grant, H.L., Layton-Matthews, D., and Peter, J.M., 2015. Distribution and controls on silver mineralization in the Hackett River Main Zone, Nunavut, Canada: An Ag-and Pb-enriched archean volcanogenic massive sulfide deposit. Econ. Geol. 110 (4), 943–982. https://doi.org/10.2113/econgeo.110.4.943.
Hagni, R., 1996. Mineralogy and significance of bornit ores in the Viburnum trend, southeast Missori Lead district. In: D.F. Sangster (Editor), Carbonate-hosted Lead-Zinc deposits. Special Publication No. 4, Society of Economic Geology, USA, pp. 611–630.
Hall, W. E., and Heyl, A. V., 1968.  Distribution of minor elements in ore and host rock, Illinois-Kentucky fluorite district and Upper Mississippi Valley zinclead district, Economic Geology(63) 655- 670. https://doi.org/10.2113/gsecongeo.63.6.655 .
Hedenquest, J.W., Arribas, A., and Urien, G., 2000. Exploration for Epithermal Gold Deposits. SEC; Rmiezos 13, 245-277.
Jazi, M.A., Karimpour, M.H., and Malekzadeh Shafaroudi, A., 2016. Nakhlak carbonate-hosted Pb(Ag) deposit, Isfahan province, Iran: a geological, mineralogical, geochemical, fluid inclusion, and sulfur isotope study, Ore Geology Reviews 80. http://dx.doi.org/10.1016/j.oregeorev.2016.06.010.
Jeffrey C. A., 2001.  Supergene processes in galena-replacement mineralization from the Longstone Edge vein system, Derbyshire , Proceedings of the Yorkshire geological society 53, 197-206. https://doi.org/10.1144/pygs.53.3.197.
Karimpour, M.H., Malekzadeh Shafaroudi,A., Esmaeili Sevieri,A., Shabani,S., Allaz, J., and Stern , J., 2018. Geology, mineralization, mineral chemistry, and chemistry and source of ore fluid of Irankuh Pb-Zn mining district, south of Isfahan, Journal of Economic Geology, Vol. 9, No. 2,(in Persian with English abstract). https://doi.org/10.22067/econg.v9i2.64930.
Keith, M., Haase, K.M., Klemd, R., Krumm, S., and Strauss, H., 2016. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chem. Geol. 423, 7–18. https://doi.org/10.1016/j.chemgeo.2015.12.012.
Kesler, S.E., 2005. Ore- Forming Fluids. Elements 1, 13-18.
Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., 2009. Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104 (5), 635–668. https://doi.org/ 10.2113/gsecongeo. 104.5.635.
Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., and Walters, S., 2005. Sediment-hosted lead-zinc deposits: a global perspective. Economic Geology 100th Anniversary Volume, 561-608 .
Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D., and Gardoll, S.J., 2010. Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology 105, 593–625. https://doi.org/10.2113/gsecongeo.105.3.593.
Leng, C.B., Wang, W., Ye, L., Zhang, X.-C., 2019. Genesis of the late Ordovician Kukaazi Pb-Zn deposit in the western Kunlun orogen, NW China: New insights from in-situ trace elemental compositions of base metal sulfides. J Asian Earth Sci 184. https:// doi.org/10.1016/j.jseaes.2019.103995.
Levinson, A. A., 1980. Introduction to Exploration Geochemistry, Applied Publication Company, 924.
Li, Z., Ye, L., Hu, Y., Wei, C., Huang, Z., Yang, Y., and Danyushevsky, L., 2020. Trace elements in sulfides from the Maozu Pb-Zn deposit, Yunnan Province, China: Implications for trace-element incorporation mechanisms and ore genesis. Am. Mineral. 105 (11), 1734–1751. https://doi.org/10.2138/am-2020-6950.
Li ,G,. Zhao,Z, Wei, J., and Ulrich,T., 2022. Trace element compositions of galena in an MVT deposit from the Sichuan-Yunnan-Guizhou metallogenic province, SW China: Constraints from LA-ICP-MS spot analysis and elemental mapping, Ore Geology Reviews 150, 105-123. https://doi.org/10.1016/j.oregeorev.2022.105123.
Loftus-Hills, G., and Solomon, M., 1967. Cobalt, Nickel and Selenium in Sulfides as Indicators of Ore Genesis , Mineralium Deposita 2, 228—242. http://dx.doi.org/10.1007/BF00201918.
Lueth, V.W., Megaw, P.K.M., Pingitore, N.E., and Goodell, P.C., 2000. Systematic variation in galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95(8): 1673–1687. http://dx.doi.org/10.2113/gsecongeo.95.8.1673.
Maanijou, M., Tale Fazel, E., Hayati, S., Mohseni, H., and Vafaei, M., 2020. Geology, fluid inclusions, C–O–S–Pb isotopes and genesis of the Ahangaran Pb-Ag (Zn) deposit, Malayer-Esfahan Metallogenic Province, western Iran,  Journal of Asian Earth Sciences 195 ,1-21.   https://doi.org/10.1016/j.jseaes.2020.104339.
Maghfouri, S., Hoseinzadeh, M.R., Lents, D.R., Tajeddin, H.A., Mahdavinia, M., and Sharifi, A., 2021. Nature of ore-forming fluids in the Mehdiabad world-class sub-seafloor replacement SEDEX-type Zn-Pb-Ba-(Cu-Ag) deposit, Iran; constraints from geochemistry, fluid inclusions, and O-C-Sr isotopes. Journal of Asian Earth Sciences 207,104654. http://dx.doi.org/10.1016/j.jseaes.2020.104654. 
Malakhov, A. A.,1968. Bismuth and antimony in galenas as indicators of some conditions of ore formation, Geochemistry International 7 ., 1055-1068.
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup–Moller, S., Balic-Žunic, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K., and Shimizu, M., 2008. Sulfosalt systematics: a review. Report of the sulfosalt subcommittee of the IMA Commission on ore mineralogy, Eur. J. Mineral, no. 20, pp. 7–46.  http://dx.doi.org/10.1127/0935-1221/2008/0020-1778.
Mohajjel, M., and Fergusson, C. L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, Vol. 56, No. 3, 263–287. http://dx.doi.org/10.1080/00206814.2013.853919.
Mohajjel, M., Fergusson, C. L., and Sahandi, M. R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran: Journal of Asian Earth Sciences, v. 21, p. 397–412. http://dx.doi.org/10.1016/S1367-9120(02)00035-4.
Navazi, M., Nazemzadeh Shuai, M., and Azizan, H., 2001. New paleontological findings in metamorphosed rocks of Sanandaj-Sirjan zone (south of Baft), preliminary report, geological and mineral explorations of Iran (southeast territorey); 10 p (In Persian).
Neiva, A.M.R., Moura,A, and Carvalho, P.C.S., 2015. Metallogenesis at the Terramonte Pb–Zn–Ag quartz vein, Portugal: Geological, mineralogical and geochemical evidences, Ore Geology Reviews, 71, 14.28. https://doi.org/10.1016/j.oregeorev.2015.04.023.
Nazemzadeh, M., and Rashidi, A., 2007. Geological map of Iran, 1:100000 series ,sheet 7347-Bazar (Dehsard), Geol.Surv.Iran.
Pfaff, K., Koenig, A., Wenzel, T., Ridley, I., Hildebrandt, L.H., Leach, D.L., and Markl, G., 2011. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chem. Geol. 286 (3–4), 118–134. https://doi.org/10.1016/j.chemgeo.2011.04.018.
Qian, X., 1987. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb–Zn ore deposits, Chinese Journal of Geochemistry 6: 177–190. http://dx.doi.org/10.1007/BF02872218.
Rezaeian, A., Rasas,I., Amiri, A., and Jafari, M.R., 2013. Stable isotope (O and C) geochemistry of non-sulfide Zn–Pb deposits; case study: Chah-Talkh non-sulfide Zn–Pb deposit (Sirjan, south of Iran), Arabian Journal of Geosciences 7(6) , http://dx.doi.org/10.1007/s12517-013-0862-0.
Renock, D., and Becker, U., 2011. A first principles study of coupled substitution in galena. Ore Geology Reviews, 42(1): 71–83. http://dx.doi.org/10.1016/j.oregeorev.2011.04.001.
Roshan Ravan, J., Nazemzadeh, M., and Azizan, H., 1997. Geological map of Iran, 1:100000 series, sheet 7247-Khabr, Geol.Surv.Iran.
Ruffell, A.H., Moles, N.R., and Parnell, J., 1998. Characterization and prediction of sediment hosted ore deposits using sequence stratigraphy. Ore Geology Reviews, 12: 207-223. https://doi.org/10.1016/S0169-1368(97)00029-2.
Safari Langroudi, M., 1992, Genesis of carbonate-hosted Pb-Zn deposits in Sechah-Rutchun region (southwest of Baft, Kerman province). Msc. thesis, Shiraz University, 400 p (In Persian).
Sahandi, M.R., and Soheili, M., 2014 . Geological and strurtural zonation map of iran, scale:1:1000000, Geol.Surv.Iran (GSI).
Siivola, J., and Schmid, R., 2007. List of Mineral Abbreviations; Recommendations by the IUGS  Subcommission on the Systematics of Metamorphic Rocks. Available at:  www.bgs.ac.uk/scmr/home.html.
Song, X., and Tan, H., 1996. Geochemical characteristics of the Fankou Pb-Zn deposits, Northern Guangdong, South China. In: D.F. Sangster (Editor), Carbonate-hosted Lead-Zinc deposits. Special Publication No. 4, Society of Economic Geology, USA, pp. 350–355. ISBN: 978-1-629496-22-1.
Swan, A.R.H., Sndilands, M., and Mccabe, P., 1995. Introduction to geological data analysis. Back Will Science, p. 146.
Tooth, B., Etschmann, B., Pokrovski, G.S., Testemale, D., Hazemann, J.-L., Grundler, P. V., and Brugger, J., 2013. Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study. Geochim. Cosmochim. Ac 101, 156–172. https://doi.org/10.1016/j.gca.2012.10.020.
Vandeginste, V., Swennen, R., Gleeson, S.A., Ellam, R.M., Osadetz, K., and Francois, R., 2007. Geochemical constraints on the origin of the Kiking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada. Mineralium Deposita, 42: 913-935. http://dx.doi.org/10.1007/s00126-007-0142-6.
Velasco, F., Herrero, J. M., Yusta, I., Alonso, J. A., Seebold, I., and Leach, D., 2003. Geology and Geochemistry of the Reocín Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain. Economic Geology, 98, 1371–1396. http://dx.doi.org/10.2113/gsecongeo.98.7.1371.
Wei, C., Ye, L., Hu, Y., Huang, Z., Danyushevsky, L., and Wang, H., 2021. LA-ICP-MS analyses of trace elements in base metal sulfides from carbonate-hosted Zn-Pb deposits, South China: A case study of the Maoping deposit. Ore Geol. Rev. 130(2):103945.   https://doi.org/ 10.1016/j.oregeorev.2020.103945.
Wilkinson, J. J., 2003. Wilkinson JJ (2003) On diagenesis, dolomitisation and mineralisation in the Irish Zn-Pb  orefield. Mineralium Deposita 38: 968–983. DOI:  10.1007/s00126-003-0387-7
Wilkinson, J. J., 2014. Sediment-hosted zinc-lead mineralization: processes and perspectives. Treatise on Geochemistry 2nd edition, p. 219-249. http://dx.doi.org/10.1016/B978-0-08-095975-7.01109-8.
Wind, S.C., Schneider, D.A., Hannington, M.D., and McFarlane, C.R.M., 2020. Regional similarities in lead isotopes and trace elements in galena of the Cyclades Mineral District, Greece with implications for the underlying basement. Lithos 366–367. https://doi.org/10.1016/j.lithos.2020.105559.
Whitney, D.L., and Evans, B.W. 2010. Abbreviations for names of rock-forming minerals, American Mineralogist, 95, 185–187. https://doi.org/ 10.2138/am.2010.3371.
Xue, C., Zeng, R., Liu, S., Chi, G., Qing, H., Chen, Y., Yang, J., and Wang, D., 2007. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn–Pb deposit, western Yunnan, South China. Ore Geology Reviews 31, 337–359. http://dx.doi.org/10.1016/j.oregeorev.2005.04.007.
Ye, L., Cook, N.J., Ciobanu, C.L., Yuping, L., Qian, Z., Tiegeng, L., Wei, G., Yulong, Y., and Danyushevskiy, L., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 39 (4), 188–217. https:// doi.org/10.1016/j.oregeorev.2011.03.001.
Ye, L., Li, Z.L., Hu, Y.S., Huang, Z.L., Zhou, J.X., Fan, H.F., and Danyushevskiy, L., 2016. Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China: A LA-ICPMS study. Acta Petrol Sin 32 (11), 3377–3393 (in Chinese with English abstract).
Zhao, Z., Wei, J., Liang, S., and Gao, T., 2021. Sulfide remobilization and trace element redistribution during metamorphism and deformation at the Xitieshan Pb-Zn deposit. NW China. Ore Geol Rev 136. https://doi.org/10.1016/j. oregeorev.2021.104170.
Zhuang,L., Song,Y., Liu,Y., Fard ,M., and Hou, Z., 2019. Major and trace elements and sulfur isotopes in two stages of sphalerite from the world-class Angouran Zn–Pb deposit, Iran: Implications for mineralization conditions and type, Ore Geology Reviews, 109,184–200.        https://doi.org/10.1016/j.oregeorev.2019.04.009.