Document Type : Original Research Paper

Authors

1 M. Sc. Student, Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

2 Associate Professor, Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran

3 Ph.D., Geological Survey of Iran, Tehran, Iran

Abstract

There is a close relationship between resistance to slip along decollement surfaces and presence of deep and shallow decollement levels in thin-skinned fold and thrust wedges. Decollement units in lower (Upper Red Formation) stratigraphic levels in Mianeh-Mahneshan fold belt have an effective role onthe geometry and kinematics of deformation of the area. In order to understand the fold geometry and folding mechanisms, and to exploredepth-to-the-decollement surface, we carried out data collection and field study in an area between Mianeh and Mahneshan cities. Folded structures in the study area are different from other structures within the area, as well as from the structures in the neighboring Alborz Mountains.The rise of salt domes along with the plasticity of marls in the Upper Red Formation have resulted in extreme complexities in folding pattern. In order to analyze syn-sedimentary structural features and interpret the geological evolution of the area, we used detailed structural measurements, sedimentological and sedimentary environment features, sedimentary rock studies, and paleogeography.One of the results of this study was the interpretation of syn-sedimentary growth structures in the Mianeh-Mahneshan area, which helped us to construct six structural cross-sections (AA’, BB’, CC’, DD’, EE’ and FF’)across the folded structures. Measured shortening along two Sections AA’ and DD’is 46.65% and 38.05%, respectively, with an average of 42.3%. These values are different from those estimated forthe neighboring Alborz and Zagros Orogens, where shortening ranges between 16-30%. We attribute this difference to local intense shortening in the study area caused by several factors such as basin slope, deep faults and weak beds along decollement surfaces. This study indicates that dominant folding mechanisms in the study area are detachment folding, and fault-propagation or fault-bend folding. The presence of evaporitic material (gypsum and salt) within the succession has played a major role in the kinematics of folding. 

Keywords