**References**

Alimonti, C., Rome, U., Sapienza, L. & Falcone, G., 2004- Integration of multiphase flow metering neural network and fuzzy logic in field performance monitoring, SPE, 87629-PA..

Aminian, K. & Ameri, S., 2005- Application of artificial neural networks for reservoir characterization with limited data, Journal of Petroleum Science and Engineering, 49: 212-222.

Baldwin, J. L., Bateman, R. M. & Wheatley, C. L., 1990- Application of a neural network to the problem of mineral identification from well logs. Log Anal., 279 – 293.

Benaouda, D., Wadge, G., Whitmarsh, R. B., Rothwell, R. G. & MacLeod, C., 1999- Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: an example from the Ocean Drilling Program, Geophysical Journal International, 136: 477-491.

Borsaru, M., Zhou, B., Aizawa, T., Karashima, H. & Hashimoto, T., 2006- Automated lithology prediction from PGNAA and other geophysical logs, Applied Radiation and Isotopes, 64: 272-282.

Briqueu, L., Gottlib-Zeh, S., Ramadan, M. & Brulhet, J., 2002- Inferring lithology from downhole measurements using an unsupervised self-organising neural network:study of the Marcoule silty clayish Unit, C. R. Geoscience, 334: 331-337.

Chang, H., Kopaska, C. & Chen, H., 2002- Identification of lithofacies using Kohonen self-organizing maps, Computers&Geosciences, 28: 223-229.

Cuddy, S. L., 2000- Lithofacies and permeability prediction from electrical logs using fuzzy logic, SPE, 65411.

Dubois, M. K., Byrnes, A. P., Bohling, G. C. & Doveton, J. H., 2006- Multiscale geologic and petrophysical modeling of the giant Hugoton Gas Field (Permian), Kansas and Oklahoma. In: Harris, P.M., Weber, L. J. (Eds.), American Association of Petroleum Geologists Memoir 88. American Association of Petroleum Geologists, Tulsa, Oklahoma, 307- 353.

Duboisa, K., Geoffrey, C. & Bohling, S., 2007- Comparison of four approaches to a rock facies classification problem, Computers & Geosciences, 33: 599-617.

Garrouch, A. & Labbabidi, H., 2003- Title using fuzzy logic for UBD candidate selection, SPE, 81644-MS.

Hambalek, N. & Gozalez, R., 2003- Fuzzy logic applied lithofacies and permeability forecasting, SPE, 81078.

Helle, H. B., Bhatt, A. & Ursin, B., 2001- Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study, Geophysical Prospecting, 49: 431- 444.

Malallah, A. & Nashawi, I. S., 2005- Estimating the fracture gradient coefficient using neural networks for a field in the Middle East, Journal of petroleum science and engineering, 49: 193-211.

Mohaghegh, S. D., Chevron, A., Gaskari, R. & Siegfreid, R., 2004- Determining In-Situ Stress Profiles from Logs, SPE, 90070.

Nikravesh, M. & Aminzadeh, F., 2001- Mining and fusion of petroleum data with fuzzy logic and neural network agents, Journal of Petroleum Science and Engineering, 29: 221-238.

Nikravesh, M., 2004- Soft computing-based computational intelligent for reservoir characterization, Expert Systems with Applications, 26: 19-38.

Ouenes, A., 2000- Practical application of fuzzy logic and neural networks to fractured reservoir characterization, Computers & Geosciences, 26: 953-962.

Rezaee, M. R., Kadkhodaie, A. & Barabadi, A., 2007- Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia, Journal of Petroleum Science and Engineering, 55: 201–212.

Shiwei, Y., Kejun, Z. & Fengqin, D., 2008- A dynamic all parameter adaptive BP neural networks model and its application on oil reservoir prediction, Applied mathematics and computation, 195: 66-75.

Siripitayananon, P., Chen, H. & Hart, B. S., 2001- A New Technique for Lithofacies Prediction: Back-Propagation Neural Network, Association for Computing Machinery, Inc, 2001.

Taheri, S. R., 2006- Remote sensing, fuzzy logic and GIS in petroleum exploration, SPE, 101040-MS.

Wong, P. M., Tamhane, D. & Wang, L., 1997- Neural network approach to know ledge-based well interpolation: a case study of a fluvial sandstone reservoir, Journal of Petroleum Geology, 20: 363–372.

Zhou, Z. H., Chen, Z. Q. & Chen, S., 2000- Neural Networks Based Lithology Identification, Proceedings of the International Conference on Intelligent Information Processing, Beijing, China, 2000: 139-142.