Document Type : Original Research Paper


1 Department of Geology, Faculity of Basic Science, Tarbiat Modarres University, Tehran, Iran.

2 Department of Geology, Faculity of Basic Science, Tarbiat Modarres University, Tehran, Iran

3 Department of Geology, Tarbiat Moallem University, Tehran, Iran.


Barika deposit is the first and only recognized gold (and silver) rich – massive sulfide deposit in Iran which is located at 18 km east of Sardasht city, north western part of Sanandaj-Sirjan metamorphic zone. Rock units outcropped in this area are volcano sedimentary metamorphosed rocks in green schist facies, and include association of metaandesite, metatuffite, phyllite and slate rocks, among which the metaandesitic unit (KMv1) is host rock of the deposit. Ore mineral assemblages in stratiform part of the deposit, which contain massive and banded pyrite and barite associated with subordinary silica bands, are very variable in composition and consist of pyrite, sphalerite, galena, stibnite and a variety of sulfosalt minerals and electrum. Ore mineral assemblage in silicic veins in stringer zone, are simpler and consist of pyrite, galena, sphalerite, tetrahedrite and rare chalcopyrite. Average gold and silver grades in stratiform ore are 4.2 and 260 g/t respectively and in silica stringer veins are 0.7 and 30 g/t. Base metal content in both part of the deposit is less than 1%. Lithotectonic study and trace and rare earth elements diagrams associated with Ce/Pb and Nb/U ratios of the metavolcanic rocks in the deposit area indicate that the rocks were generated from a lithospheric mantle source in the active continental margin of the SSZ.  A geochemical study of Barika deposit reveals that distribution patterns and correlation coefficient of ore elements in parts of the Barika stratiform ore and stringer zone are completely in correlation with an undeformed massive sulfide deposit. The geochemical documents indicate that despite the metamorphism and highly deformation on the deposit, the primary distribution patterns and proportion of the ore elements are well conserved, as geochemical characteristics of the Barika deformed deposit is as well as correlated with an undeformed gold- rich volcanogenic massive sulfide deposit. However there is clear textural evidence for remobilization of As, Sb, Ag and Pb minerals together with Au in Barika deposit, but, remobilized constituents of the ores do not appear to have moved beyond the margins of the ore bodies and primary metal zonation.


Azizi, H., Jahangiri, A., 2008- Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. J. Geodyn. 45, 178–190.
Azizi, H., Moinevaziri, H., 2008- Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J. Geodyn. 47, 167–179.
Ayers, J., 1998- Trace elements modelling of aqueous fluid–peridotite interaction in mantle wedge of subduction zones. Contrib. Miner. Petrol. 132, 390–404.
Brenan, J. M., Shaw, H. F., Phinney, D. L., Ryerson, F. J., 1995- Rutile–aqueous fluid partitioning of Nb, Ta, Hf, Zr. U and Th: implications for high field strength element depletions in island-arc basalts. Earth Planet. Sci. Lett. 128, 327–339.
Dubé, B., Mercier-Langevin, P., Hannington, M., Davis, D., et Lafrance, B., 2004- Le gisement de sulfures massifs volcanogènes aurifères LaRonde, Abitibi, Québec: altération, minéralisations, genèse et implications pour l'exploration. Ministères des Resources naturelles de la faune et des parcs. MB 2004-03. 112p
Dubé, B., Gosselin, P., Mercier-Langevin, P., Hannington, M. and Galley, A., 2007- Gold-rich volcanogenic massive sulphide deposits, in Goodfellow, W.D., ed., Mineral deposits of Canada—A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication no. 5, p. 75–94.
Eftekhar-Nezhad, J., 2004 - Exploration text of The Mahabad Quadrangle map :1:250,000 (North Kurdestan). Geological Survey and Mineral Exploration of Iran. Tehran
Franklin, J. M., Gibson, H. L., Jonasson, I. R., Galley, A. G., 2005. Volcanogenic massive sulfide deposits. Economic Geology 100th Anniversary Volume, 523–560
Hannington, M. D., Peter, J. M., and Scott, S. D., 1986- Gold in sea – floor polymetallic sulfides: Economic Geology. V.81, P.1867-1883
Hannington, M. D., Poulsen, K. H., Thompson, J. F. H., and Sillitoe, R. H., 1999-Volcanogenic gold in massive sulfide environment: Reviews in Economic Geology, v. 8, p. 325-356.
Hofmann, A.W., 1988- Chemical differentiation of the earth: the relation between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314.
Horikoshi & Shikazono, 1978- Subtypes and their characteristics of Kuroko- type deposits: Mining Geology, v.28, p.267-276.
Huston, D., and Large, R., 1987- Genetic and Exploration Significanco ef the Zinc Ratio (100 Zn/(Zn + Pb)) in Massive Sulfide Systems.Economic Geology. Vol. 82, 1987, pp. 1521-1539
Huston, D. L. and  Large, R. R., 1989- A chemical model for the concentration of gold in volcanogenic massive sulfide deposits. Ore Geol. Rev.4: 171-200.
Huston, D., Bottrill, R.S., Creelman, R., Khin Zaw, Ramsden, T., Rand, S., Gemmell, J.B., Bruce, L., Sie, S.H., and Large, R.R., 1992-Geologic and Geochemical Controls on the Mineralogy and Grain Size of Gold-Bearing Phases, Eastern Australian Volcanic Hosted Massive Sulfide Deposits. Econ. Geol.87: 542-563.
Huston, D. L., 2000- Gold in volcanic-hosted massive sulfide deposits; distribution, genesis, and exploration, in Hagemann, S.G. ed., Gold in 2000: Reviews in Economic Geology, vol. 13, p. 401-426.
Irvine, T. N., Baragar,W. R., 1971- A guide to the chemical classification of the commonvolcanic rocks. Can. J. Earth Sci. 8, 523–546.
Keppler, H., 1996. Constraints from partitioning experiments on the composition of the subduction zone fluids. Nature 380, 237–240.
Large, R. R., Huston, D. L., McGoldrick, P. J. and Ruxton, P. A., 1989- Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models. Econ. Geol. Mon(6). P. 520-536.
Large, R. R., McPhie, J., Gemmell, J. B., and Davidson, G., 2001- The Spectrum of Ore Deposits Types, Volcanic Environment, Alteration Halos, and Related Exploration Vectors in Submarine Volcanic Succession: Some Example From Australia. Econ. Geol.96: 913-938.
LeBas, M. J., Le Maitre, R. W., Streckeisen, A., Zanettin, B.,1986- A chemical classification of volcanic rocks on the total alkali-silica diagram. J. Petrol. 27, 745–750.
Marquis, P., Hubert, C., Brow, A. C., and Rigg, D. M., 1990a- Overprinting of early, redistributed Fe and Pb-Zn mineralization by latestage Au-Ag-Cu deposition at the Dumagami mine, Bousquet district, Abitibi, Quebec: Canadian Journal of Earth Sciences, v. 27, p. 1651-1671.
Marquis, P., Hubert, C., Brown, A. C., and Rigg, D.M., 1990b- An evaluation of genetic models for gold deposits of the Bousquet district, Quebec, based on their mineralogic, geochemical, and structural characteristics: Canadian Institute of Mining and metallurgy, Special Volume 43, p. 383-399.
Marquis, P., Brown, A. C., Hubert, C., and Rigg, D. M., 1990c- Progressive alteration associated with auriferous massive sulfide bodies atthe Dumagami Mine, Abitibi greenstone belt, Quebec: Economic Geology,vol. 85, p. 746-764.
McDonough, W. F., Sun, S. S., Ringwood, A. E., Jagoutz, E., Hofmann, A.W., 1992- Potassium, Rubidium, and Caesium in the Earth and Moon andthe evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 56, 1001–1012.
McDonough,W. F., Sun, S. S., 1995- Composition of the Earth. Chem. Geol. 120,223–253.
Mohajjel, M., Fergusson, C. L., Sahandi, M. R., 2003- Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J. Asian Earth Sci. 21, 397–412
Nakamura, N., 1974- Determination of REE, Ba, Fe,Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38, 757–775.
Ohomot, H., Mizukami, M., Drummond, S.E., Eldridge, C.S., Pisutha – Arnond, V. and Lenagh, T.C., 1983. Chemical processes of Kuroko formation. Economic Geology, Monogr.5: 570-604.
Ohmoto, H., 1996- Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore geology reviews, 10:135-177
Pearce, J. A., Cann, J. R., 1973-Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 19: 209-300.
Pearce, J. A., 1983- The role of subcontinental lithosphere in magma genesis at destructive plate margins. In Continental basalts and mantle xenoliths, C.J. Hawksworth & M.J. Norry (eds.). 230-249
Poulsen, K.H., and Hannington, M.D., 1996- Volcanic-associated massive sulphide gold, in Eckstrand, O.R., Sinclair, W.D., and Thorpe, R.I., eds., Geology of Canadian mineral deposit types: Geology of Canada, vol.8, p. 183-196
Pearce, J.A., Baker, P.E., Harvey, P.K., Luff, L.W., 1995- Geochemical evidence for subduction Fluxes, mantle melting and fractional crystallization beneath the SouthSandwichIsland arc. J. Petrol. 36, 1073–1109.
Robert, F., Brommecker, R., Bourne, B. T., Dobak, P. J., McEwan, C. J., Rowe, R. R., Zhou, X., 2007- Models and exploration methods for major gold deposit types: exploration 07. Fifth Decennial International Conference on Mineral Exploration, Toronto, , Proceedings, pp. 691–
Rudnick, R. L., Fountain, D. M., 1995- Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 32, 267–309.
Sillitoe, R.H., Hannington, M. D., and Thompson, J. F. H., 1996- High-sulfidation deposits in the volcanogenic massive sulfide environment:
     Economic Geology, v. 91, p. 204-212.
Sun, S. S., 1980- Lead isotope study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Hilo. Trans. R. Soc. London, Ser. 297: 409-445.
Sun, S. S., McDonough, W. F., 1989- Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In: Sunders, A. D., Norry, M. J. (Eds.), Magmatic in Oceanic Basins, Special Publication. Geology Society of London 42, 313–345.
Taylor, S. R., McLennan, S. M., 1985- The Continental Crust: its Composition and Evolution. Blackwell, Cambridge, p. 312.
Tourigny, G., Brown, A. C., Hubert, C., and Crépeau, R., 1989- Synvolcanic and syntectonic gold mineralization at the Bousquet Mine, Abitibi greenstone belt: Economic Geology, v. 84, p. 1875-1890.
Tourigny, G., Brown, A.C., Hubert, C., and Crépeau, R., 1990- Syn-volcanic and syn-tectonic gold mineralization at the Bousquet Mine, Abitibi greenstone belt, Quebec: Economic Geology, v. 85, p. 1875-1890.
Tourigny, G., Doucet, D., and Bourget, A., 1993-Geology of the Bousquet 2 mine: An example of a deformed, gold-bearing, polymetallic sulfide deposit: Economic Geology, v. 88, p. 1578-1597.
Valliant, R. I., and Barnett, R. L., 1982- Manganiferous garnet underlying the Bousquet gold orebody, Quebec: metamorphosed manganese sediment as a guide to gold ore: Canadian Journal of Earth Sciences, v. 19, p. 993- 1010.
Winchester, J. A. & Floyd, P. A., 1977- Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–343.
Yang, K., and Scott, S. D., 2003- Geochemical relations of felsic magmas to ore metals in massive sulfide deposits of the Bathurst Mining Camp, Iberian Pyrite Belt, Hokuroku District and Abitibi Belt: Economic Geology Monograph 11, p. 457-478
Yeats, C. J., and Groves, D. I., 1998- The Archean Mount Gibson gold deposits, Yilgarn craton, Western Australia: Products of combined syn-volcanic and syntectonic alteration and mineralisation: Ore Geology Reviews, v. 13, p. 103-129.