زمستان ۸۹، سال بیستم، شماره ۷۸، صفحه ۱۱۱ تا ۱۱۶

ترکیب و کیفیت زغالسنگهای لاویج، البرز مرکزی، ایران

پدرام ناوی^۱، محمد یزدی^۳*، رعنا اسماعیل پور^۲ و احمد خاکزاد^۲

امدیریت تضمین کیفیت، سازمان زمینشناسی و اکتشافات معدنی کشور، تهران، ایران ۲ گروه زمینشناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران تاریخ دریافت: ۱۷/ ۱۱/ ۱۳۸۷ تاريخ پذيرش: ١٥/ ٠٩/ ١٣٨٨

چکندہ

زغالسنگهای منطقه لاویج در ۴۸ کیلومتری جنوب باختری آمل، در شمال پهنه ساختاری البرز مرکزی قرار دارند. لایههای زغالسنگی این منطقه در سازند شمشک با سن تریاس بالایی تا ژوراسیک زیرین تشکیل شدهاند و بیشتر شامل ماسهسنگ، شیل، ماسهسنگ آهکی، سیلت و آرژیلیت است. حد زیرین سازند زغالدار لاویج، محدود به دولومیت تودهای تا آهک دولومیتی زرد تا خاکستری الیکای بالایی با سن تریاس میانی است. حد بالایی لایههای زغالدار در بخش باختری به سنگ آهک چرتدار سازند نسن (پرمین) محدود میشود و در بخش خاوری به آهک مارنی ناز کلایه (ورمیکوله) الیکای زیرین (تریاس پیشین) محدود میشود. با توجه به وجود ویترینیتهایی که در آب شیرین بیشتر تشکیل میشوند و فراوانی و نوع رسوبات تخریبی و گسترش آنها (کم داشتن پیریت) و بررسیهای شریعت نیا (۱۹۹۴) (نقل شده توسط Goodarzi et al.,2006) این زغالسنگها در شرایط دریاچهای آب شیرین و تالابی تشکیل شدهاند. از نظر سنگنگاری، زغالسنگهای منطقه لاویج از نوع دروكلارن نيمه شفاف داراي فوزينيت گازدار هستند. ماسرالهاي تشكيل دهنده اين زغالسنگ ها شامل ويترينيت، فوزينيت، اكسينيت، سمي ويترينيت، سمي فوزينيت و میکسینیت است. کانی هایی که در این زغالسنگ ها به صورت ناخالصی وجود دارند شامل کانی های رسی نظیر ایلیت، کائولینیت، مونتموریلونیت، آرژیلیت و کربنات هایی همچون سیدریت، دولومیت، کلسیت و مقدار کمی پیریت است. افزون بر مطالعات سنگنگاری، ۷ نمونه از خاکستر لایههای اصلی زغالسنگدار منطقه با دستگاه XRF و ICP-OES برای تعیین عناصر اصلی و فرعی تجزیه شیمیایی شدند. مطالعات ژئوشیمیایی نشان داد که منشأ K، Ti، Al و Si سنگهای دارای کوارتز و کانیهای رسی، منشأ Fe کانیهای سولفیدی همچون پیریت و منشأ Ca و Mg کانیهای کربناتی است. عناصر کمیاب همچون V، Nb، Ta، Ga، Th، Cr و Rb در کانیهای رسی و Pb، Se، Mo و As به احتمال از پیریت منشأ گرفتهاند. منشأ Sr، Ba، Ta و Ga از کانی های فسفاتی همچون آپاتیت و فلوئور آپاتیت است. همچنین نتایج حاصل از این پژوهش نشان داد که این زغالسنگها دارای رطوبت ۱/۴درصد، خاکستر کم (۱۷ درصد) و مواد فرار زیادتری (۳۲ درصد) نسبت به دیگر زغالسنگهای البرز مرکزی هستند.

> كليد واژه: ماسرال، كاني، تركيب ژئوشيميايي، زغالسنگ لاويج، البرز مركزي ***نویسنده مسئول:** محمد یزدی

E-mail: m-yazdi@sbu.ac.ir

ا-مقدمه

زغالسنگهای منطقه لاویج در ۴۸ کیلومتری جنوب باختری آمل، در شمال بخش البرز مركزي قرار دارد (شكل ۱- الف و ب). واحدهاي زغالسنگدار اين منطقه در سازند شمشک با سن تریاس بالایی تا ژوراسیک زیرین تشکیل شدهاند (اسماعیل نیا و يزدى، ١٣٨٢). اين سازند در منطقه لاويج از شمال باخترى تا جنوب خاورى امتداد دارد. واحدهای تشکیل دهنده آن شامل زغالسنگ، شیل زغالدار و ماسهسنگ است. لايههاي زغالدار لاويج در شمال اين منطقه، بويژه در محل ديزنكلا وكرچي فراواني بیشتری دارند. بهطوری که بیشتر حفاریهای زیرزمینی برای استخراج زغالسنگ در این دو بخش متمرکز شده است. ستبرای لایههای زغالدار منطقه لاویج از ۲/۲تا ۱/۵متر است. حد زیرین سازند زغالدار لاویج محدود به دولومیت تودهای تا آهک دولومیتی زرد تا خاکستری الیکای بالایی با سن تریاس میانی است. حد بالايي لايه هاي زغال دار در بخش باختري به سنگ آهك با چرت سازند نسن (پرمين) محدود می شود (نقشه زمین شناسی ۱:۱۰۰۰۰ آمل(تلفیق توسط وحدتی) و بلده (سعیدی و قاسمی))و در بخش خاوری به آهک مارنی ناز کالایه (ورمیکوله) الیکای زیرین (تریاس پیشین) محدود میشود. در همسایگی این منطقه، واحد زغالدار شمشک و الیکای بالایی دوباره رخنمون دارند (نقشه زمین شناسی ۱:۱۰۰۰۰ بلده) و در بخش های شمال باختری منطقه نیز به چشم میخورند. شواهد زمین شناسی نشان مىدهد كه اين زغالسنگها در شرايط درياچهاي آب شيرين و تالابي تشكيل شدهاند (ويترينيت بالا) (معين السادات و رضوي ارمغاني، ١٣٧٢). كربناتها، كانيهاي رسي از جمله آرژیلیت، ایلیت و نیز کانیهای سولفیدی همچون پیریت به مقدار ناچیز در زغالسنگهای این منطقه وجود دارد. زغالسنگ لاویج جزو رده زغالهای گازدار بهشمار میرود. مقاله حاضر به بررسی ویژگیهای ماسرالها، کانیشناسی و ژئوشیمی

زغالسنگیهای منطقه زغالدار لاویج میپردازد.

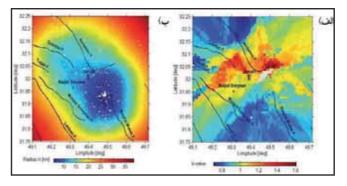
۲- نمونهبرداری و تجزیه نمونهها

در این پژوهش، بهطور تصادفی از لایههای زغالدار غیرهوازده و سنگهای همراه آنها در بخشهای مختلف منطقه لاویج نمونهبرداری شد. از ۷ محل معدن کاری، ۲۸ نمونه سالم زغالسنگ برداشت، کدگذاری و برای بررسی کانیهای معدنی و ماسرالها، مقاطع صیقلی از آنها تهیه شد. سپس ۷ نمونه از خاکستر زغالسنگهای منطقه، به وسیله دستگاه XRF برای۲۱ عنصر و به وسیله دستگاه ICP-OES (مدل Varian) برای ۴۰ عنصر در آزمایشگاه سازمان زمین شناسی تجزیه شد. (شکل ۲) با توجه به تازگی و متداول نبودن روش مطالعه عناصر کمیاب در زغالسنگها در ایران، ابتدا شرح مختصری از این روش داده می شود.

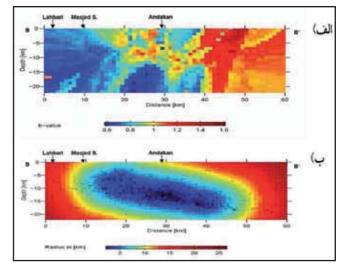
ابتدا نمونه های سالم زغال سنگ در کوره زمان دار به مدت ۲۰ دقیقه در دمای ۱۱۰ درجه و بهمدت ۱ساعت در دمای ۳۰۰ درجه سانتی گراد قرار می گیرد. سپس دما را افزایش میدهیم تا به ۵۲۵ درجه سانتی گراد برسد. آن گاه نمونه به مدت ۱ ساعت در این دما باقی میماند تا پودر زغالسنگ کاملاً به خاکستر تبدیل شود. در صورت نیاز، این فرايند تا سه مرتبه تكرار مي شود تا از خاكستر شدن قسمت بيشتر نمونهها اطمينان حاصل شود و یا نمونه را تا دمای ۸۵۰ درجه سانتی گراد بهصورت پلکانی حرارت میدهیم. برای اندازه گیری عناصر اصلی موجود در خاکستر زغالسنگ ۷ نمونه با XRF تجزیه شدند که نتایج تجزیهها در جدول ۱ ارائه شده است. برای اندازه گیری غلظت عناصر خاکی کمیاب، بخش دیگری از خاکستر هر ۷ نمونه با دستگاه ICP- OES تجزیه شد. در آزمایشگاه، خاکسترها به روش زیر به محلول تبدیل می شوند. ۵/۰ گرم پودر خاکستر

كتابنگاري

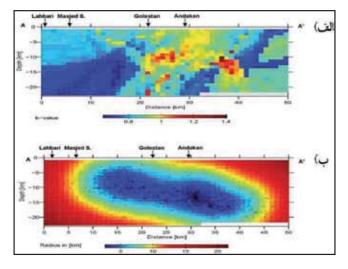
ابراهیمی، م.، ۱۳۸۸- بررسی زمینلرزههای القایی در محدوده سد مسجد سلیمان، پایان نامه کارشناسی ارشد ژنوفیزیک-گرایش زلزلهشناسی، پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله

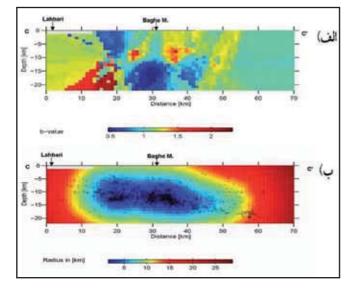

References

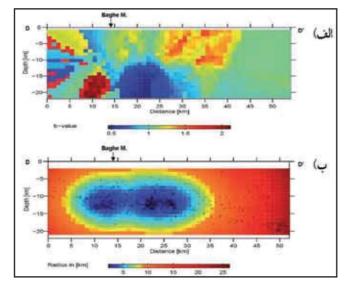
- Gupta, H. K., Rastogi, B., K. and Narain, H., 1972- Common features of the reservoir associated seismic activities , B. Seismol.Soc.Am., 62 , 481-492.
- Gupta, H. K. and Rastogi, B. K., 1976- Dams and earthquakes, Elsevier, the Netherlands, 229pp.
- Gutenberg, R. and Richter C. F., 1942- Frequency of earthquakes in California, B.Seismol.Soc.Am., 34, 831-851.
- Hamilton, T. and McCloskey, J., 1997- Breakdown in power-law scaling in an analogue model of earthquake rupture and stick-slip, Geophys. Res. Lett., 24, 465-468.
- Mogi, K., 1962- Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst. Tokyo Univ. 40, 831–853.
- Pickering, G., Bull, J. M. and Sanderson, D. J., 1995- Sampling power-law distributions, Tectonophysics 248, 1-20.
- Scholz ,C., H., 1968- The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes , B.Seismol.Soc.Am., 58 , 399-415.


Simpson, D. W., 1976- Seismicity changes associated with reservoir impounding, Eng.Geol.10, 371-85.

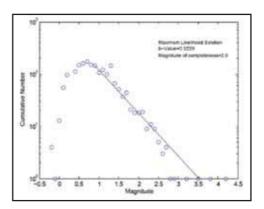
- Utsu, T., 1965- A method for determining the value of b in the formula logN=a-bM, showing the frequency-magnitude relation for earthquakes, Geophy.Bull., Hokkaido uni.13, 99-103.
- Warren, N. W. and Latham, G. V., 1970- An experimental study of thermally induced microfracturing and its relation to volcanic seismicity, J. Geophys. Res., 75, 4455-4464.
- Wiemer, S. and Beniot, J. P., 1996- Mapping the b-value anomaly at 100km depth in the Alaska and New Zealand Subduction Zones, Geophys. Res. Lett., 23, 1557-1560.


Wyss, M., 1973- Towards a physical understanding of the earthquake frequency distribution, Geophys. J. R. Astr. Soc. 31, 341–359.

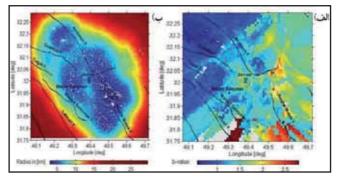

شکل ۱۰- الف) ضریب b سطحی در سه ماهه پنجم (ژوئن، ژوئیه و اوت ۲۰۰۷) در محدوده سد مسجد سلیمان ب) نقشه تفکیک پذیری


شکل ۱۲- الف) تغییرات ژرفایی ضریب b در امتداد برش 'BB ب) نقشه تفکیک پذیری

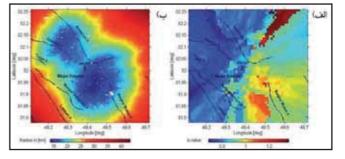
شکل ۱۱- الف) تغییرات ژرفایی ضریب b در امتداد برش 'AA ب) نقشه تفکیک پذیری

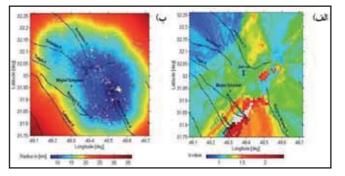


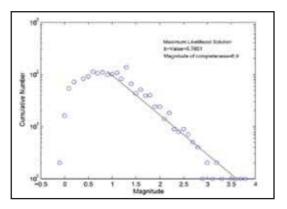
شکل ۱۳- الف) تغییرات ژرفایی ضریب b در امتداد برش 'CC ب) نقشه تفکیک پذیری

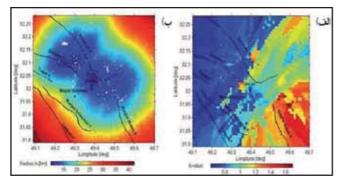


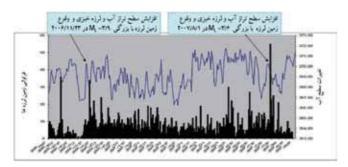
شکل ۱۴- الف) تغییرات ژرفایی ضریب b در امتداد برش 'DD ب) نقشه تفکیک پذیری

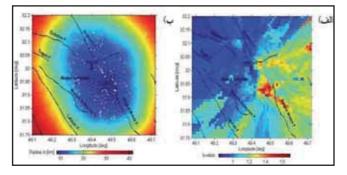



شکل ۲- ضریب b محاسبه شده برای گستره به شعاع ۳۰ کیلومتری از مخزن سد مسجد سلیمان


شکل ۴- الف) ضریب b کلی منطقه در سطح ب) نقشه تفکیک پذیری


شکل ۶- الف) ضریب b سطحی در سه ماهه دوم (سپتامبر، اکتبر و نوامبر ۲۰۰۶) در محدوده سد مسجد سلیمان ب) نقشه تفکیک پذیری


شکل ۸- الف) ضریب b سطحی در سه ماهه سوم (دسامبر ۲۰۰۶، ژانویه و فوریه ۲۰۰۷) در محدوده سد مسجد سلیمان ب) نقشه تفکیکپذیری


شکل ۳- ضریب b محاسبه شده برای خارج از منطقه سد

شکل ۵- الف) ضریب b سطحی در سه ماهه اول (ژوئن، ژوئیه و اوت ۲۰۰۶) در محدوده سد مسجد سلیمان ب) نقشه تفکیکه پذیری

شکل ۷- منحنی تغییرات سطح آب به همراه لرزه خیزی منطقه در دوره ۱۵ ماهه نصب شبکه محلی در گستره سد سجد سلیمان

شکل ۹- الف) ضریب b سطحی در سه ماهه چهارم (مارس، آوریل و می ۲۰۰۷) در محدوده سد مسجد سلیمان ب) نقشه تفکیکه پذیری

از آن کاهش مییابد (شکل ۱۰) که علت این امر نیز همانند سه ماهه نخست ناشی از تغییرات شدیدتر سطح تراز آب و وقوع تعداد بیشتر زمین لرزهها در این سه ماهه است (شکل ۷) که بزرگای به نسبت بزرگ تری نیز داشته اند (۳/۶_M در تاریخ ۲۰۰۷/۸/۱). ۲-۳. محاسبه ضریب b در ژرفا

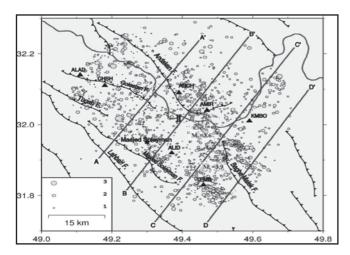
در گام پسین به منظور شناسایی میزان ناهمگنی پوسته در ژرفا و به دست آوردن ضریب b ژرفایی در منطقه برشهای عرضی کم و بیش موازی به پهنای ۲۵ کیلومتر که به صورت عمود بر روند کلی لرزهخیزی و بویژه عمود بر گسلهای اصلی منطقه چون گسل اندکان، مسجد سلیمان و گلستان رسم شدند (شکل ۱).

شکل ۱۱ میزان تغییرات ژرفایی ضریب b را در امتداد برش 'AA نشان میدهد، همان طور که دیده می شود میزان این ضریب بین ۷/۰ تا ۱/۱ متغیر است و بیشترین مقدار خود را در زیر گسل های گلستان و اندکان و در ژرفای بین ۳ کیلومتری تا ۱۲ کیلومتری دارا است و علت این امر نیز به طور کامل مشخص است چرا که حضور دریاچه سد در بخش خاور تاج سد و نفوذ آب به منافذ سنگها باعث افزایش ناهمگنی پوسته در این منطقه و افزایش ضریب b گشته است. در نقشه ژرفایی، ضریب b زمینلرزهها در امتداد برش 'BB (شکل ۱۲) نیز دیده می شود که درست در زیر گسل اندکان و کمی پیش از آن که تاج سد قرار دارد، ضریب b بالایی بین ژرفاهای ۳ تا ۱۲ کیلومتری دیده میشود. برای بررسی ناهمگنی در زیر دریاچه سد مسجد سلیمان برش عرضی'CC بر اساس شکل۱ به موازات دو برش پیشین با عرض مشابه ۲۵ کیلومتر عمود بر گسل لهبری رسم شد. نقشه ژرفایی ضریب b برای این برش آشکارا، مقدار بسیار بالایی ا ۲۱ ا درست در زیر گسل باغ ملک و محل دریاچه سد و در ژرفای ۷ تا ۱
 $(b \geq 1/4)$ کیلومتری نشان میدهد (شکل ۱۳). با توجه به میزان بالای ضریب b در این منطقه از گستره مورد بررسی، رویداد زمین لرزههای القایی دور از انتظار نیست. خاوریترین برش عرضی ('DD در شکل ۱) با عرض مشابه و به موازات سه برش دیگر به صورت عمود بر لرزهخیزی مشاهدهای در خاور گستره مورد مطالعه رسم شد. نقشه ژرفایی ضریب b در این برش نیز همانند برش پیشین در فاصله ژرفایی ۳ تا ۱۲ کیلومتری و در زير گسل باغ ملك و بالاي آن مقادير بالاتر از ١/٠ را به نمايش مي گذارد (شكل ١٤).

6- بحث و نتیجهگیری

بررسی پراکندگی فراوانی زمینلرزههای رویداده در گستره سد مسجد سلیمان نسبت به تغییرات سطح تراز آب دریاچه نشان میدهد هر زمان که سطح تراز آب افزایش قابل توجهی یافته، فراوانی زمینلرزهها نیز افزایش چشم گیری از خود نشان میدهد. ارتباط مشخصی بین رویداد زمینلرزههای متعدد و تغییرات سطح تراز آب دیده میشود (شکل ۷).

ضریب d بر آورد شده برای منطقه سد در شعاع ۳۰ کیلومتری از مخزن برابر (شکل ۲) و در خارج از منطقه سد برابر ۲۸۰۱ (شکل ۳) است. در ضریب d سطحی محاسبه شده برای منطقه، مقدار این ضریب در ناحیه خاور دریاچه سد، در j میخزن سد و حوالی گسل های اندکان و باغ ملک همواره به نسبت بالا است (در بیشتر موارد ۲۰۱۰ $\leq d$)، که نشان دهنده میزان بالای ناهمگنی در این منطقه است. علت بیشتر موارد ۲۰۱۰ خ)، که نشان دهنده میزان بالای ناهمگنی در این منطقه است. علت و اطراف آن می شود و می تواند سبب تحریک این گسل ها برای رویداد زمین لرزه شود. همان گونه که در همه برش های ترسیمی دیده می شود، مقدار بالای ضریب d را از این مناطق قابل توجیه است که این امر باعث ایجاد ناهمگنی در پوسته زیر مخزن و اطراف آن می شود و می تواند سبب تحریک این گسل ها برای رویداد زمین لرزه شود. همان گونه که در همه برش های ترسیمی دیده می شود، مقدار بالای ضریب d مقدار در زرفاهای بین ۳ تا ۱۲ کیلومتری، آشکارا بالا بودن این ضریب را در ناحیه خاوری دریاچه سد و بویژه در محدوده دو گسل باغ ملک و اند کان نشان می دهد. مقادیر ضریب d بالا در منطقه سد (چه در ژرفا و چه در سطح)، بویژه در اطراف


دریاچه سد مسجد سلیمان دلالت بر پراکندگی ناهمگن تنش در بخشهای مختلف پوسته دارند. این در حالی است که تنشهای همگن ضریبهای b کوچک تری را ایجاد می کنند(Mogi, 1962). (1972) (Gupta et al. (1972) نشان دادند که ضریب b بالای دیده شده در زمین لرزههای القایی مخزن، ناشی از طبیعت ناهمگن تنشهای القاشده توسط مخزن است.

Simpson (1976) نیز نشان داد که افزایش تدریجی فشار منفذی می تواند مهم ترین عامل در ایجاد زمینلرزههای القایی باشد، چرا که این افزایش می تواند در نتیجه ضعیفشدن گسلهای منطقه در نتیجه توزیع و افزایش نسبی فشار منفذی باشد و در نتیجه تنشهای ناهمگن در منطقه که به ضریبهای طبالا منجر می شود دیده شده است.

با توجه به نتایج به دست آمده از اندازه گیری تغییرات ضریب d در گستره سد مسجد سلیمان، به روشنی می توان اظهار داشت که بیشترین مقدار این ضریب چه در سطح و چه در ژرفا در بخش خاور دریاچه سد مسجد سلیمان و در حوالی گسل های اندکان و بویژه گسل باغ ملک دیده می شود که دلالت بر القایی بودن زمین لرزه های رخداده در این مناطق دارد. ارتباط بسیار نزدیک میان تغییرات ناگهانی و قابل توجه سطح تراز آب دریاچه با رخداد دست کم دو زمین لرزه با بزرگاهای ۶/۳ یا M سطح تراز آب (شکل ۷) که محل رویداد آنها همخوانی بسیار خوبی با مناطق دارای مقادیر طبالا دارند (اشکال ۱و۴)، همگی تأییدکننده القایی بودن دو زمین لرزه یا دشده و دیگر رویدادهای رخداده در مناطق همجوار آنها هستند

سپاسگزاری

پژوهش حاصل ثمره قرارداد پژوهشی منعقده میان پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله به عنوان مشاور و شرکت آبنیرو- طرح سد و نیروگاه مسجد سلیمان و سازمان آب و برق خوزستان – معاونت بهرهبرداری سد و نیروگاه به عنوان کارفرما است. به این وسیله از تمامی مسئولانی که امکان انجام پژوهش حاضر را فراهم نمودند صمیمانه سپاسگزاری میشود. از آقای مهندس محسن دزواره که با دقت فراوان زحمت قرائت فاز و تعیین محل اولیه رویدادهای ثبت شده در شبکه لرزهنگاری سد و نیروگاه مسجد سلیمان را به عهده داشتند و از آقای مهندس حمیدرضا محمد یوسف که در تمامی مراحل نوفه سنجی، نصب ایستگاهها و جمع آوری دادهها مشتاقانه ما را یاری نمودند، تشکر میشود.

شکل ۱– ۱۹۲۴ زمین لرزه ثبت شده در منطقه سد مسجد سلیمان تا شعاع ۳۰ کیلومتری تاج سد و تا ژرفای ۲۰ کیلومتر به همراه موقعیت ایستگاهها و گسل های منطقه به همراه مقاطع عرضی موازی به پهنای ۲۵ کیلومتر که به صورت عمود بر روند کلی لرزه خیزی منطقه رسم شدند، مکان بزرگ ترین زمین لرزههای ثبت شده با ستاره در شکل مشخص شده است.

همخوانی خوبی داشت. در پژوهش حاضر سعی بر این شده است تا به بررسی ناهمگنیهای تنش پوسته به کمک اندازه گیری ضریب b برای زمینلرزههای القایی رخ داده در گستره سد مسجد سلیمان پرداخته شود.

۲- منطقه مورد مطالعه و نحوه بررسی دادهها

سد مسجد سلیمان با ارتفاع از پی بالغ بر ۱۷۷ متر، عرض تاج ۱۵ متر، طول تاج برابر با ۴۹۷ متر و با دریاچهای به حجم ۲۶۱ میلیون متر مکعب در سطح تراز نرمال، یکی از مرتفع ترین سدهای سنگ ریزهای با هسته رسی قائم کشور به شمار میرود. سد یادشده در زون لرزهزمینساختی زاگرس و در ۲۵ کیلومتری شمال خاور شهر مسجد سلیمان قرار دارد. با توجه به تأثیر آبگیری مخزن در تغییر آهنگ لرزهخیزی منطقه مجاور و به منظور پایش لرزهای منطقه، یک شبکه لرزهنگاری متشکل از ۵ ایستگاه کوتاه دوره در اطراف گستره سد یادشده نصب شد. همزمانی نصب شبکه یادشده با راهاندازی ۶ ایستگاه لرزهنگاری سد و نیروگاه گتوند علیا و نزدیکی یکی از ایستگاههای شبکه لرزهنگاری باند پهن پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله به منطقه مورد بررسی موجب شد تا در تحلیل زمینلرزههای رویداده در گستره سد مسجد سلیمان در مجموع از ۱۲ ایستگاه لرزهنگاری مستقر در منطقه استفاده شود (ابراهیمی، ۱۳۸۸). تعداد کل زمینلرزههای تعیین محل شده با دقت مطلوب در منطقه سد مسجد سلیمان در فاصله زمانی ۱۵ ماهه از ماه ژوئن ۲۰۰۶ تا ماه اوت ۲۰۰۷، ۳۶۰۹ زمینلرزه است. به منظور انجام بررسیهای دقیقتر روی زمین لرزههای القایی، از آن جا که رومرکز چنین زمین لرزههایی غالباً تا فاصله ۳۰ کیلوتری از محل تاج سد قرار می گیرند و ژرفای کانونی آنها نیز بین ۰ تا ۲۰ کیلومتر است (Gupta et al. (1972)، بنابراین زمین لرزه های خارج از محدوده ۳۰ کیلومتری تاج سد و زمینلرزههای بیشتر از ژرفای ۲۰ کیلومتر حذف شدند. تعداد رویدادهای باقیمانده به ۱۹۲۴ زمینلرزه کاهش یافت. شکل۱ نمایش دهنده زمینلرزههای روىداده و نیز موقعیت ایستگاههاى سد مسجد سلیمان تا شعاع ۳۰ كیلومترى تاج سد و تا ژرفای ۲۰ کیلومتر است. پس از اعمال تصحیحات انجام شده، بررسی های آماری بر روی دادههای اصلاح شده صورت گرفت.

۳- تحلیل دادهها و نتایج به دست آمده

یکی از مهم ترین عوامل برای تحلیل ضریب b در زلزله شناسی بزرگای آستانه ای (٫M) داده ها است. به خاطر محدودیت های سیستم مشاهده یا سطح نوفه (نویز) در یک منطقه مشخص، تعداد رویدادهای گزارش شده با بزرگاهایی کمتر از یک بزرگای مشخص (که به عنوان بزرگای آستانه ای (٫M) شناخته می شود) کمتر از واقعیت است. با فرض یک توزیع قانون-توانی برای رابطه بسامد بزرگا (رابطه ۱) می توان ٫M را در نقطه ای که منحنی رسم شده (Iog(N بر حسب M دچار شکستگی می شود به دست آورد. در این جا همان طوری که در شکل های ۲ و ۳ دیده می شود ٫M برابر ۹/۰ در منطقه سد با استفاده از ۱۹۲۴ رویداد انتخابی، بر آورد شده است.

همان گونه که پیش تر نیز عنوان شد، در مناطقی که شاهد رویداد زمین لرزههای القایی مخزن هستیم، مقادیر بالاتری از ضریب b نسبت به دیگر مناطق را شاهد هستیم. ضریب b بر آورد شده برای منطقه سد در شعاع ۳۰ کیلومتری از مخزن برابر ۹۲۲۹/ (شکل ۲) و در خارج از منطقه سد برابر ۱۰/۷۸۰۱ (شکل۳) است. برای بر آورد این ضرایب از رابطه (۲) (ارائه شده توسط 1965, Utsu) استفاده شده است. این رابطه نشان می دهد که احتمالاً بخش قابل توجهی از زمین لرزههای رویداده در نزدیکی سد و دریاچه آن، از نوع القایی هستند.

برآوردی از میزان خطای ضریب b با استفاده از فرمول تجربی ۱۰۶

ازی مونت کارلو بر روی اثر نمونهبرداری از Pickering et al. (1995)، بر پایه شبیه سازی مونت کارلو بر روی اثر نمونهبرداری از یک توزیع قانون توانی (power-law distribution) به دست آمده است: $\sigma = b \sqrt{\frac{1}{N}} \ b \ge 1,$ (۳)

 $\sigma = \sqrt{\frac{b}{N}} \ b < 1, \tag{(f)}$

که در آن σانحراف معیار در بر آورد ضریب bاست و N تعداد زمین لرزه ها است. بر پایه معادلات (۳) و (۴) خطای ضریب b برای داده های مورد استفاده در محدوده ۰۸/۰۰+ تا ۲۰/۱۶۷ برای b های به ترتیب کوچک تر و بزرگ تر از یک بر آورد شده است.

1−۳. محاسبه ضریب b در سطح

برای بررسی بهتر شیوه پراکندگی این ناهمگنیها در منطقه سد، تلاش شد تا ضریب b را به صورت دو بعدی در سطح و ژرفای محاسبه نماییم. این کار به وسیله نرمافزار Wiemer and Beniot, 1996) Zmap) انجام گرفت. برای به تصویر کشیدن میزان ضریب b در سطح، منطقه سد به سلول هایی به ابعاد ^۰۰٬۰۰ × ۰/۰۱۰ در طول و عرض جغرافیایی تقسیمبندی شد. دایرهای در اطراف هر یک از نقاط این شبکهها کشیده شد و شعاع آن افزایش یافت تا شامل ۵۰ رویداد شود که دست کم ۱۰ رویداد آن دارای بزرگی بیشتر از بزرگی تکمیلی Mc باشد (ابراهیمی، ۱۳۸۸). شعاع قابل قبول برای نمونهبرداریهای انجام شده در نقشه تفکیکپذیری رسم شده برای هر شکل با رنگ آبی مشخص شده است و نحوه پراکندگی رویداد زمینلرزهها نیز در این نقشه به صورت نقاط سفید رنگ نمایش داده شده است. ضریب b با استفاده از روش بیشترین احتمالات (رابطه ۲) برای منطقه محاسبه شد. سپس تغییرات b در کل منطقه با انتخاب مقیاس رنگی مناسب (شکل ۴) نمایش داده شد. در نهایت همان طور که در شکل دیده می شود، میزان ضریب b کلی منطقه در سطح بین ۲/۵–۵/۰ متغیر است. بر اساس شکل ۴ همان طور که انتظار میرفت ضریب b در بخش خاوری مکان سد یعنی جایی که دریاچه سد قرار دارد و در محدوده گسل اندکان و منتهی الیه شمالی گسل باغ ملک بیشترین مقادیر را داراست (b ≥ 1/۰). این امر به نوبه خود نمایش دهنده میزان بالای ناهمگنی پوسته در این منطقه است.

با مشاهده تغییرات ماهیانه ضریب d در سطح نیز می توان به میزان تغییرات شدید این ضریب در بخش خاور دریاچه سد در طی زمان پی بر د و ناهمگنی شدید در پوسته زیر مخزن را دید. بدین منظور ضریب d سطحی، به صورت سه ماهه در بازه زمانی ۱۵ ماهه نصب شبکه از ماه ژوئن ۲۰۰۶ تا اوت ۲۰۰۷، رسم شد. به طوری که در شکل ۵ قابل مشاهده است، میزان این ضریب در سه ماهه اول (ژوئن، جولای و اوت شمل ۵ قابل مشاهده است، میزان این ضریب در سه ماهه اول (ژوئن، جولای و اوت شمال گسل باغ ملک شاهد ضریب d (۱۰۱ ≤ d) بالایی هستیم. اما در سه ماهه دوم ناحیه دیده میشود (شکل ۶) به طوری که ضریب d بین ۲/۱–۸/۰ در منطقه تغییر ناحیه دیده میشود (شکل ۶) به طوری که ضریب d بین ۲/۱–۸/۰ در منطقه تغییر کلی کاهشی در ضریب d نسبت به سه ماهه پیشن را نشان می دهند علت این امر را می توان به تغییرات شدیدتر سطح تراز آب در این سه ماهه و رخداد تعداد بیشتر زمین لرزه ها که با زمین لرزهای با بزرگای ۳/۹_۲ در تاریخ ۲۳ نوامبر ۲۰۰۶ همراه روده است، نسبت داد (شکل ۶).

همان گونه که در شکلهای ۸ و ۹ دیده می شود، برای سه ماهه سوم (دسامبر ۲۰۰۶، ژانویه و فوریه ۲۰۰۷) و سه ماهه چهارم (مارس، آوریل و می ۲۰۰۷) افزایش دوباره میزان ضریب b در منطقه دیده می شود، به طوری که در سه ماهه سوم محدوده تغییرات ضریب b بین ۲–۱ و در سه ماهه چهارم بین ۱/۶–۱ متغیر است.

در سه ماهه پنجم (ژوئن، ژوئیه و اوت ۲۰۰۷) دیده می شود که دوباره میزان ضریب b در سمت خاور دریاچه سد و بویژه در حوالی گسل باغ ملک نسبت به سه ماهه پیش

Composition and Quality of Coals in the Lavij Coal Deposit, Central Alborz, Iran

P. Navi¹, M. Yazdi^{2*}, R. Esmailpur² & A. Khakzad²

¹Manager of Quality Assurance, Geological Survey of Iran, Tehran, Iran
²Dept. of Geology, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran
Received: 2009 February 05
Accepted: 2009 September 06

Abstract

Lavij coal deposit is situated at a distance of 48 km SW of Amol, in Central Alborz coalfield, North of Iran. Lavij coal-bearing strata in Central Alborz zone are within the Upper Triassic– Lower Jurassic formation. The coal-bearing sediments in this area are called Shemshak Formation (Upper Triassic–Lower Jurassic). This Formation consists mainly of sandstone, shale, calcareous sandstone, argillite and siltstone. Several coal seams with different thickness are interbeded with these sediments. The Shemshak Formation is underlain by the Upper Middle Triassic (thick bedded to massive dolomitic limestone) oolitic limestone (Elika Formation). It is also overlain in western section by the Upper Permian cherty limestone (Nesen Formation). The present paper deals with maceral, mineral and geochemical composition of these coals. Petrographical studies showed that the main macerals of these coals are vitrinite to semivitrinite, fusinite and exinite. The minerals of these coals are mainly clays like argillite, carbonates like calcite and sulphides like pyrite.Seven samples were analyzed from ash of coal seam in the Lavij area. The samples were analyzed by XRF and ICP-OES for major and minor elements. The data processing showed K, Si, Al, Ti indicating presence of quartz and clay minerals, Fe, As, Mo, Se, Pb indicating presence of sulphides like pyrite, Ca and Mg indicating the presence of carbonates and Rb, Cr, Th, Ga, Ta, Nb, V indicating presence of clay minerals. The coal contained in low ash (17%) and low moisture (1.4%) and high volatile matter (32%) as compared to other coals in central Alborz.

Keywords: Maceral, Mineral, Geochemical Composition, Lavij Coals, Central Alborz For Persian Version see pages 111 to 116 *Corresponding author: M. Yazdi; E-mail: m-yazdi@sbu.ac.ir

Carboniferous Conodonts Biostratigraghy in Kiyasar Region and Introduction 7 Biozones Comparable to World Standard Conodont Zonation

A. Fallah¹, B. Hamdi¹ & H. Mosaddegh^{2*}

¹ Research Institute for Earth Science, Geological Survey of Iran, Tehran, Iran

² School of Earth Sciences, Damghan University, Damghan, Iran

Received: 2009 February 02 Accepted: 2009 September 06

Abstract

The studied section (Kiyasar)is situated in Central Alborz,75 Km. southeast of Sari. The thickness of Carboniferous sequences (Mobarak Formation) is 385 meter and consists of thin-bedded limestone at the base and various thickness of limestone (mostly with medium thickness) with intercalations of shales at the top. Because of lithological similarity and the lack of index microfossils in the uppermost of Devonian and lowermost of Carboniferous, deposits, determination of this boundary was impossible in the field and the approximate boundary has been identified after study of lab by condont elements. Apparently, this boundary is conformable and continual that the rocks at the bottom of its attributed to Khoshyeilagh Formation. This boundary is located in the interval of samples 4.1(late Devonian) and 4.3(lower Carboniferous) which the distance between them is 4m.(thin to medium-bedded limestones). The limit of boundary is distinct with extinction of Genera and Species for example *Icriodus costatus, Pelekysgnathus* sp. and *Polygnathus semicostatus* in the late of Devonian(sample4.1) and appearance of species for example *Polygnathus spicatus, Spa. crassidentathus, Po. thomasi* and *Cly. gilwernensis* in early Carboniferous (sample4.3). in summery, limestone rocks in alternation with shale of upper Famenian is attributed to lower-middle *costatus* zone form lower part of Carboniferous rocks in the region. The top of Mobarak Formation is overlaid by alternations of sandstone, shales and limestone (in the middle part), belong of Dorud Formation (lower Permian) with a disconformity. Carboniferous condonts (20 Genus, 36 Species, 7 Subspecies are reported from Mobarak Fm.,Kiyasar region, for the first time as well as the distinguished following 7 condont zones: 1) *sulcata* zone 2) *duplicata* zone 3) *sandbergi-L. crenulata* zone 4) *typicus* zone 5) *anchoralis-latus* zone 6) *texanus-A. scalenus* zone 7) *Gn. bilineatus* zone. According to condont data Carboniferous sequences in Kiyasar section were deposited from

Keywords: Kiyasar, Lower Carboniferous, Alborz, Lower Tournaisian, Upper Visean, Mobarak Formation, Conodont Elements.

For Persian Version see pages 117 to 122

*Corresponding author: H. Mosaddegh; E-mail: mosaddegh@du.ac.ir