مدلسازى وارون دادههاى مغناطيسى با استفاده از روش زير فضا (Subspace Method)

Abstract

چچكيده در اين مقاله، به منظور مدل سازى وارون دادههاى مغناطيسى، از بسط توابع متعامد و ضرايب دامنه اين بسط استفاده شده است. بردارهاى پايه بسط ويثّه بردارهاى بهنجار شده مشتق دوم (Hessian Matrix) تابع هدف (Objective Function) است كه از يك مدل مرجع استخراج مى شوند. تعداد محدوودى از ويزه بردارهايى كهه به اين تر تيب به مصنوعى و واقعى ميدان كلى ميدان مغناطيسى آزمايش شده است. نتايج حاكى از همڭر ايى(Convergence) بالا و مقاومت در برابر نوفه در مسايل مطرح شده است.

كليدوازهها: مدل سازى وارون، روش زير فضا، همگرايى، تصوير سازى ماتريسى، توابع متعامد
*نويسنده مسئول: على نجاتى كلاته

چايه دارد. روش زير فضا و كاربردهاى آن در حل مسايل بزر گ® مقياس به خوبى در Sambridge (1990) و Kennett \& Williamson (1988) ،Oldenburg et al. (1993)

مورد بحث قرار گرفته است. در اين مقاله، بردارهاى پايهه بر خلاف ديغر روشه هاى بيان شده، ويزَه بردارهاى (ماتريس Hessian است. از آنجا كه واريانس حل مسئله بستگى به انحنا (Curvature) تابع هدف و انحنا تابع هدف به ماتريس Hessian (ماتريس
 توسط بردارهاى ويزْه ماتريس Hessian كنترل مى شودود. همه نتيجه گيرى
 شده، در فضاى MATLAB صورت گر رفته است.

r- تئورى روش زير فضا

حل بيشتر مسايل غير خطى به كمينه كردن يك تا تابع مناسب از داده مادها، متغيرهاى

 مسايل زئوفيز يكى توزيح خطا در دادهما از آمار گوسى (Gaussian Statistic) إيروى
 دادههاى بر آورده شده تئورى و به صورت زيرمىتوان در نظر گرفت: $F(x)=\frac{1}{2}\left(\mathrm{~d}_{0}-\mathrm{d}(\mathrm{x})\right)^{\mathrm{T}} \mathrm{C}_{\mathrm{d}}^{-1}\left(\mathrm{~d}_{0}-\mathrm{d}(\mathrm{x})\right)$

 خطا در دادهها است. هر حلى از مسئله را مى توان به صورت بسط زير نمايش داد: $x_{i}=x_{i}^{\text {ref }}+\sum_{j=1}^{P} \mathrm{~V}_{\mathrm{ij}} \alpha_{\mathrm{j}} \quad i=1,2, \ldots, M$

در بيشتر مسائل وارون زئوفيز يكى رابطه غير خطى ميان مقادير مشاهدهالى و متغيرهايى

 Corbato (1965),Kunaratnam (1972) به دست آوردن متغيرهاى هندسى تو ارئى Pedersen (1977) ,Menichetti (1983), Mickus (1992)

 (Hessian Matrix) در اين صورت روشهاى خاص كه بتواند بدون وارون ارونسازى ماتريس هاي
 ياد شده مناسب است. برای چجير گى بر اين مشكل و ح حل مسئله از روش زير فـر فضا استفاده مىشود. روش زير فضا از كمينهسازى محلى (Local Minimization) تابع هدف در زير فضاى افراز (Spanned) شده توسط تعداد محاد مدودى از از بردارها در در

 ميزان تأثير و موفقيت روش زير فضا بستگى به تعداد و نحوئ انتخاب اين بردارهاى

باشد، پاسخ داراى يك واريانس بزر گك خواهد بود و به همان ميز ان دقت در بر آورد پاسخ دقيق، پايین خواهد آمد. با توجه به اين كه انحناى يك يك منحنى، معيارى از تيز بو بودن كمينه آن است است، انتظار داريم واريانس پاسخ، در ارتباط مستقيم با انحنا تابع هدف باشد. امـي اما انحنا با با با استفاده

 بردارهاى پايه در وارونسازى استفاده شده است. رفتار بردارهارهاى پايه، شباهت باهِ بسار

 اين است كه در هر مسئله بيش تعيين شده (Over Determined) هر مر مر با با استفاده از تعداد زيادى از متغير هاى مدل مقيد شده است، اما در مورد مسايل كم تعيين شده (Under determined) هر متغير مدل با استفاده از تعداد زيادى از داده ان مقاد مقيد نشده است، از اينرو در بيشتر مسائل كم تعيين شده با نوسانات زار زياد و انير انير واقعى در متغيرهاى مدل پس از وارونسازى مواجه خواهيم شد. حال با توجه به اين مطلب ایِ اگر در وارون نسازى از بردارهاى ويزَه كه معادل ويزَه مقادير كو چجك هستند استد استفاده شود،
 خو اهيم داشت. از اينرو براى دستيابى به جهت
 مى كنيم، در اين صورت وارونسازى پايدار و سريح خوراهد بور بود. با با يك رو رويكرد

متغير هاى مدل به مقادير متغير هاى مدل x x خو اهيم رسيد.

r-Y. Y. عدم قطعيت (Uncertainty) و قدرت تفكيك (Resolution) در

 وارونسازىعدم قطيت در مدلسازى با افزايش خطا در دادهمهاى مشاهدمالى افزا ايش مى يابد. در

 مورد بحث قرار گرفته است. در صورتى كه تابع

 مححاسبه كرد. در صورتى كه C ماتريس كواريانس متغير هاى مدل باشد، داريم: $C=H_{s b}{ }^{+}=V\left(V^{T} H V\right)^{-l} V^{T}$ كه ${ }^{+}{ }^{\text {(}}$ وارون عمومىى (Generalized inverse) روش زير فضا است. ريشه توان

 تغيير ات از حل سامانه معادلهمهاى زير بهدست مى آيد: $H \delta x^{\text {true }}=-\gamma$

با ضرب $\delta x=H_{s b}{ }^{+} H \delta \alpha^{\text {true }}$
با توجه به رابطه يادشده ماتريس قدرت تفكيك متغير هاى مدل به صورت زير تعريف
$R=H_{s b}{ }^{+} H$

كه در آن M,

 به صورت ماتريس - بردارى به شكل زير مىتوان نوشت:
$X=X^{r e f}+V \alpha$
از آنجا كه بردارهاى پايه در طول روند وارونسازى ثابت هستند، تنها ضر ايب بسط م بايد بر آورد شوند. در هر تكرار تغييرات متغيرهاى مدل از رابطه زير به دست مى آيد: $\delta x=V \delta \alpha$
اگر F(x) يكك تابع هموار از x باشد، با استفاده از تقريب درجه دوم از تابع هدف با استفاده از بسط سرى تيلور داريم:
$F(x+\delta \alpha)=F(x)+\gamma^{T} \delta x+\frac{1}{2} \delta x^{T} H \delta x$
كه ץ بردار گراديان و H ماتريس Hessian است، كه از روابط زير محاسبه مىشوند: $\gamma=-G^{T} C_{d}^{-1}\left(d_{0}-d(x)\right)$
$H=G^{T} C_{d}^{-1} G-\nabla_{x} G^{T} C_{d}^{-1}\left(d_{0}-d(x)\right)$

 دادهها و متغيرهاى مدل را بيان مى كند و در مقايسه با عبارت اول رابطه (V) ناتِيز و

 تغييرات جد يد متغير هاى مدل در زير فضاى افراز شده در فضاى متغير هاى مدل داريم: $\delta \alpha=-\left(V^{T} H V\right)^{-1} V^{T} \gamma$
(\wedge)
$\frac{\partial F(\delta \alpha)}{\partial(\delta \alpha)}=0 \quad j=1,2, \ldots, P$

در نهايت، تغييرات متغيرهاى مدل در هر تكرار با تصوير سازى وارون

$\delta x=-V\left(V^{T} H V\right)^{-1} V^{T} \gamma$
در صورتى كه تعداد بردارهاى پايه انتخاب شده $P(P<M)$ كوچك تر از تعداد كل متغيرهاى مدل باشد، وارونسازى ماتريس Hessian تصويرسازى شده در زير فضايى كوچكت تر از متغيرهاى مدل انجام خواهد شد. ماتريس PXP مشتقات دوم
 بهترى نسبت به ماتريس Hessian تصوير سازى نشده دارد. معادله بالا رابطه عمومى برى وارونسازى غير خطى با استفاده از روش زير فضاست. براى ايجاد ساختار ماتريس تصوير سازى شده نياز به محاسبه عبارات زير داريم: $H_{P}{ }^{(i j)}=\nu^{(i) T}\left[G^{T} C_{d}^{-1} G\right] v^{(i)}$ $i, j=1,2, \ldots, P$

براى ساختن H_{P} نياز به ايجاد ساختار $G^{T} C_{d}^{-I} G$ يست زيرا با بازسازى (• () به صورت زير برای ${ }^{\text {H }}$ داريم:
$H_{P}^{(i j)}=b^{(i) T} C_{d}^{-l} b^{(i)}$
با در نظر گرفتن مؤ لفههاى ماتر يس Hessian تصوير سازى شده، انجام شود.

همان گونه كه اشاره شد، با استفاده از يكک مجموعه از بردارهاى پايه، روابط اساسى روش زير فضا فرمولبندى شده است. در صورتى كه تابع هدف داراى يكك كمينه تيز (Sharp minimum) در همسايگى مدل بر آوردى باشد، انتظار میرود به دليل
 تابع هدف دارای يك كمينه پهن (Broad minimum) در همسايگى مدل بر آوردى

معلوم در نظر گرفته مىشود. ميدان كلى مغناطيسى زمينه با بز رگى

 مغناطسيى نيز در هر بلو كك 0.002SI در نظر گرفته شده است (در مورد دادههاى
 معلوم، با استفاده از International Geomagnetic Reference Field) IGRF) يا به صورت مستقيم اندازهگيرى مىشود). هندسه ساختار مصنوعى در نظر گرفته شده و دادههاى ميدان كلى مغناطيسى ناشى با اضافه كردن هـ ها در درصد نوفه (نسبت نوفه به به سيگنال ها درصد در نظر گرفته شده است) در شكل آـ الف الف و ب آمده است

 استفاده مى كنيم. با تجزيه ماتريس Hessian مقادير منفرد ويرّه بردارها و و ويزير

 شدهاند. در شكل \& ب بردارهاى بايه ماتريس Hessian نسبت به شماره بر بردار در يك
 ميان يابى شده است) ار ائه شده است.

 $32 \eta T$

 با توجه به شكل داراى يك افت آشكار است به طورى كه دامنه ويزَه بردارهاى پس ار از از اين شماره نسبت به دامنه بيشينه حلودد هزار برابر كاهش يانـي
 ويزَه بردار در وارونسازى استفاده مى كينيم (انتخاب كمينه بردار بارهاى پا بايه مورد نياز
 مى شود. اين مطلب بيشتر به منظور كمتر شدن حجم محاسبات عددى و و مقاومت وارونسازى در برابر نوفه انجام مىشود). در اين مورد نيز، چجون مدل اون اوليه مانند مثال

 نشان داده شده است. در نمايههاى ^^ و 9 به روشنى بر برازش ميان داد دادهمهاى مصنوعى و دادههاى بر آورد شده و همحثنين پوشش مناسب مدل مصنوعى ديده مى شود. در شكل • ا نيز ماتريس قدرت تفكيك برآى متغير ها ماى مدل رسم شده است. قطرى بودن اين ماتريس نشان مىدهد وارونسازى با دقت مطلو با انجام شده است.
 صورت ايدهآل مدلسازى شده است. با استفاده از روابط (IY) و (IU) برایى R R داريم: $R=V\left(V^{T} H V\right)^{-l} V^{T} H$.

 متغيرهاى مدل نيز افزايش مى يابد. بنابراين همواره يك رارئ رابطه معكوس (رابطا
 متغير هاى مدل وجود دارد.

Y- Y-

به منظور مدلسازى دو بعدى دادههاى ميدان مغناطيسى، ابتدا بايد به هـ حل مسئله مستقيم موضوع پرداخت. همخِنان كه در مدلسازى مهاى دو بعدى دانى در مسايل ميدان

$$
\text { شكل ! آمده است را با M (x, }) \text { نشان دهيم، داريم: }
$$

$M(x, z)=2 k T \sin \delta\left(1-\cos ^{2} \alpha \cos ^{2} i\right) \times\left[\begin{array}{l}\left.\left(\begin{array}{l}\tan \\ -1 \\ \left.\frac{\left(x-x_{0}\right)+b}{h}-\tan ^{-1} \frac{x-b}{h}\right) \cos \theta \\ +\frac{1}{2} \ln \frac{\left.\left(x-x_{0}\right)-b\right)^{2}+h^{2}}{(x+b)^{2}+h^{2}} \sin \theta\end{array}\right] .\right] . ~\end{array}\right.$
در رابطه بالا x, به تر تيب مختصات قائم و افقى، x x_{0} مختصات افقى مر كز دايكك، h زرفاى بالايى دايكن، T,k به تر تيب مغناطيس يذ يرى و شدت ميدان مغناطيسى محيط (Ambient magnetic strength)، مغناطيسى و زاويه شيب دايك، (Strike) مى توان ميدان كلى بهدست آمده از دو دايك با اختلاف زرفى مان مورد نظر با يك
 اينرو كه همه روش هاى بعدى و محاسبات وارونسازى بر مبناى آنها انجام مىشود،

از اهميت ويزّهاى برخور ردار است

 تباين مغناطيسيذيرى لايهها (همانطور كه در مدلسازىهايى كها كه هدف آنا آنها تعيين متغيرهاى هندسى است) با استفاده از اطلاعات زمينشنـاسى يانى يا ديخر اطلاعات زئوفيز يكى به مدل به عنوان اطاعلاعات اوليه داده مى شور د.

 ه/• كيلومتر براى دادهماى مؤلفه ميدان كلى مغناطيسى استفاده شده است. سنگك

 خوديذيرى با استفاده از اطلاعات اوليه يا مشاهده مستقيم زمين شناسى به عنوان انـوان متغير

 تفكيك متغير هاى مدل نيز در شكل Yا بـ نشان داده شاد شده است. با استفاده از نتايج تفسير و پردازش

 دادههاى ميدان مغناطيسى كلى همخو انى قابل قبولى با نتا يار بـ به دست آمده ناشى از تفسير نتايج لرزهنگارى در ناحيه يادشده دارد.

با توجه به وجود نوفه بالاى همراه با دادهماى مغناطيسى (كه اين سطح بالاى

 وارونسازى سامانههاى بزر گك مقياس كه در آنها خطاى محاسبات عددى نقش
 در وارونسازى دادههاى زثؤوفيز يكى مورد استفاده قرار گيرد.

براى نشان دادن پايدارى روش وارونسازى زير فضا در بر ابر نوفه با شرايط مثال

در حد سطح نوفه اضافه شده به دادهها است. كَفتنى است كه بيشينه مقدار نوفه اضافه شده به داده

 زئوفيزيكى معمول نيست و تنها به دليل نشان دادن پايدارى روش در در بر برابر نوفه مطرح

شده است.
-وارونسازى دادههاى واقعى - مطالعه موردى: در منطقه دشت مغان به علت رخنمون
 زيادى در دست نيست. در اواخر كر تاسه، اوائل پالئوسن، چیين وسيعى در شمال ايران روى داده كه به نظر مى رسد منطقه دشت مغان نيز در تأثير
 سنگكهاى قديمى تر قر ار گر فتهاند. اين دگرشيبیى در باختر دشت مغان توسط مقاطع لرزهنگارى تأييد شده است. نيمر خ دادههاى ميدان كلى مغناطيسى ناحيه مغان كه توسط IGRF تصحيح شده ه، در

 نقطه برداشت داده با فاصله ه/ • كيلومتر است.

 خودهذ يرى رسوبات منطقه و نإييوستگى (بالا آمد گیى) باز التى با استفاده از از اطاعات موجود زمينشناسى برابر با 0.0009SI در نظر گرفته شده است. هدف

 نسبت بزر گى مقادير ويزَه نسبت به بزر گی ويزَه مقدار اول آمده است. است در اين

 مدل سازى دادههاى مصنوعى بدان اشاره شد، در اينجا نيز آشكار است. داده اسهاى ناشى از مدل اوليه در شكل 1 ا نشان داده شده است است. با توجه به افت افت شديد در در در دامنه

 كه بايد در روند وارونسازى معكوس شوند، عمليات عددى و محاسباتى به صور تـر تصاعدى افز ايش مى يابد.
خطاى ميانگين مجذور براى •r تكرار هـىدريى و استفاده از • بر بردار

شكل r - الف) ناهنجارى ميدان كلى مغناطيسى ناشى از مدل مصنوعى. منحنى توپر ناهنجارى بلون نوفه و منحنى خط چچين ناهنجارى با نوفه ه درصد است. ب) مدل مصنوعى با طول كيلومتر و خودپذيرى 0.002SI

شكل 千- بردار های پايه ماتريس Hessian نسبت به شماره بردار در يك نمايه سه بعدى

شكل ا - ميدان مغناطيسى كلى ناشى از يكك دايكك در زرفاى ا كيلومتر و شيب \& \& درجه. زاويه ميل مغناطيسى (Inclination) \& 4 درجه در نظر گرفته شده است (Thurston et al., 2002)

شكل r- نمايش نسبت بزر گی ويزَه مقادير ماتريس Hessian نسبت به بزر گی ويزه مقدار اول

شكل ه- منحنى آبى (خط چچن) دادههاى ناشى از مدل مصنوعى و منحنى سرخ (تویر) دادههاى بر آوردى ناشى از وارونسازى

شكل 4- منحنى آبى مدل مصنوعى و منحنى سرخ مدل بر آورد شده با استفاده از وارونسازى

شكل Q- الف) منحنى آبى (خط چين) دادههاى ناشى از مدل مصنوعى و منحنى سرخ (توير) دادههاى بر آوردى ناشى از وارونسازى ب) منحنى آبى مدل مصنوعى و منحنى سرخ مدل بر آورد شده با استفاده از وارونسازى بعد از هr تكرار و استفاده از بّ بر بردار پايه

شكل r|- ماتريس قدرت تفكيك متغير هاى مدل براى 9 تكرار پی در پی و استفاده از بr بردار پايه و نسبت نوفه به سيگنال ها درصد

شكل ^ - خطاى ميانگین مجذور براى هr تكرار پی در پی و استفاده از זّ بردار پايه

شكل • ا- ماتريس قدرت تفكيك متغيرهاى مدل بعد از ra تكرار و استفاده از شr بردار پايه

 نوفه به سيگنال ها درصد

شکكل זا- مقايسه ميزان و سطح نوفه ها درصد كه به دادههاى ناشى از مدل مصنوعى اضافه شده است. منحنى توپر دادههاى ناشى از مدل اوليه و منحنى خط چین دادهها به همراه نوفه

شكل 10- نيمرخ اتنخاب شده از دادههاى ميدان كلى مغناطيسى كه توسط IGRF تصحيح شده است

شكل IV - بردارهاى پايه ماتريس Hessian نسبت به شماره بردار در يكك نمايه سه بعدى براى مدل اوليه مغروض

شكل 19- خطاى ميانگين مجذور برای •r تكرار پیى در پی و استفاده از •r بردار پايه

شكل If - الف) منحنى آبى (خط چین) دادههاى ناشى از مدل مصنوعى و منحنى سرخ (توپر) دادههاى بر آوردى ناشى از وارونسازى ب) منحنى آبى مدل مصنوعى و منحنى سرخ مدل بر آورد شده با استفاده از وارونسازی پس از 9 تكرار و استفاده از س بش بردار پايه و نسبت نوفه به سيگنال 0 ا درصد

شكل 19- نمايش نسبت بزر گی ويثه مقادير ماتريس Hessian نسبت به بزر گى ويثه مقدار اول براى مدل اوليه مغروض

شكل ^1 - ناهنجارى ميدان كلى مغناطيسى ناشى از مدل اوليه با زرفاى دو كيلومتر

شكل اץ-ماتريس قدرت تفكيك متغير هاى مدل براى وارونسازى دادهماى واقعى

$$
\begin{aligned}
& \text { شكل •Y- الف) منحنى آبى (خط چچی) دادههاى واقعى و منحنى سرخ (توپر) دادههاى } \\
& \text { بر آوردى ناشى از وارونسازى ب) منحنى آبى مدل اوليه و منحنى سرخ مدل بر آورد شده با }
\end{aligned}
$$

References

Corbato, C. E., 1965- A least-square procedure for gravity interpretation. Geophysics 30,228-233
Jackson, D. D., 1972- Interpretation of inaccurate and inconsistent data, Geophys J.R.Astr.Soc. 28, 97-109
Kennett, B. L. N. \& Sambridge, M. S., 1998- Inversion for multiple parameter classes. Geophys.J.int. 135, 304-306
Kennett, B. L. N. \& Williamson, P. R., 1988- Subspace methods for large-scale nonlinear inversion, Mathematical Geophysics: a survey of recent development in seismology and geodynamics, Dordrecht. Pp. 139-154.
Kunaratnam, K., 1972- An interactive method for solution of a non linear inverse problem in magnetic interpretation. Geophysical Prospecting 20, 439-447
Menke, W., 1989- Geophysical data analysis: discrete inverse theory. Academic press Inc.
Mickus, K. L., 1992- Inversion of gravity and magnetic data for lower surface of a 2.5 dimensional sedimentary basin. Geophysical Prospecting 40, 171-191
Minichetti, V., 1983- Simultaneous interactive magnetic and gravity inversion. Geophysical Prospecting 31, 929-944
Mirzaei, M. \& Bredewout, J. W., 1996- 3-D Microgravity data inversion for detecting cavities, European journal of environmental and engineering geophysics, 1, 249-270
Oldenburg, D. W., McGillivary, P. R. \& Ellis, R. G., 1993-Generalized subspace method for large-scale inverse problems. Geophys.J.int. 114, 12-20
Oldenburg, D. W., Unsworth, M., 1995- Subspace inversion of electromagnetic data: application to mid-ocean-ridge exploration. Geophys.J.int. 123, 161-168
Pederson, L. B., 1977- Interpretation of potential field data A generalized inverse approach. Geophysical Prospecting 25, 199-230
Sambridge, M. S., 1990- Non-linear arrival time inversion: constraining velocity anomalies by seeking smooth models in 3-D. Geophys.J.int. 102, 635-677
Thurston, J. B., Smith, R. S., Guillon, J., 2002- A multimodel method for depth estimation from magnetic data. Geophysics. 67, 555-561
Wiggins, R. A., 1972- The general linear inverse problem: Implication of surface waves and free oscillation of earth structure. Rev Geophysics and space physics 10, 251-258

Hydrocarbon Potential Evaluation and Depositional Environment of Sargelu Formation in Masjid-i-Soleiman Oilfield

B. Alizadeh ${ }^{1 *}$ \& S. H. Hosseini ${ }^{1}$
'Department of Geology, Earth Science Faculty, Shahid Chamran University, Ahwaz, Iran Received: 2008 July 21
Accepted: 2009 February 02

Abstract

Sargelu Formation is deeply buried and has limited distribution in Dezful Embayment (limited to the northern part), hence, investigation of petroleum potential of this formation has attracted many petroleum geologists. In this study, hydrocarbon potential of Sargelu Formation in Northern Dezful Embayment is evaluated geochemically. For this purpose 34 drill cuttings from well numbers, 309, 310, 312 and 316 in Masjid-i-Soleiman (MIS) oilfield were selected, and geochemical analyses such as Rock-Eval VI pyrolysis and PY-GC were performed. The results reveal that the formation has "Very Good" hydrocarbon potential because of its high amounts of Total Organic Carbon (TOC). Results were plotted on Van-Krevelen as well as on HI vs. $\mathrm{T}_{\text {max }}$ diagrams, and demonstrated mixed Kerogen Type III and IV due to low HI caused by higher thermal maturity, in well numbers 309,310 and 312. However, the prominent Kerogen type was determined to be of mixed Kerogen type II and III. In all, the organic matter in well No. 316 has a better Kerogen type (mixed type II and III). All the Samples plotted on Smith Diagram have more than $0.1 \mathrm{~S}_{1} /$ TOC ratios and capable of generating hydrocarbon. The $\mathrm{Pr} / \mathrm{nC}_{17} \mathrm{vs} . \mathrm{Ph} / \mathrm{nC}_{18}$ ratio demonstrates marine environment for Sargelu Formation. Pyro and thermograms reveal that normal alkanes are dominated in $\mathrm{C}_{15}-\mathrm{C}_{20}$ range, while heavy normal alkanes are missing due to its high thermal maturity. In all it can be concluded that Sargelu Formation in MIS oilfield, due to its paleoenvironment as well as burial depth exclusively has a good quality of organic matter with adequate maturity at the end of oil window and hence is gas-prone.

KeyWords:DezfulEmbayment,Masjid-i-Soleiman Oilfield,Sargelu Formation,Genetic Potential,Depositional Environment,Rock-Eval,Pyrolysis-GasChromatography For Persian Version see pages 173 to 178
*Corresponding author: B. Alizadeh; E-mail: Alizadeh@scu.ac.ir

Determination of Drilling Point using Fuzzy Logic in GIS Case Study: Now Chun Copper Prospect

G. R. Elyasi ${ }^{1 *}$, M. Karimi ${ }^{2}$, A. Bahroudi ${ }^{1}$ \& A. Adeli Sarcheshme ${ }^{1}$
${ }^{1}$ Exploration of Mining Engineering Dep., Mining Faculty, Tehran University, Tehran, Iran ${ }^{2}$ GIS Department, Survey Faculty, K.N.Toosi University of Technology, Tehran, Iran Recceived: 2008 October 12 Accepted: 2009 April 20

Abstract

Piles of maps from different sources with varying scales and formats and different styles and absence of a proper solution for integrating vast amount of information has resulted in a complexity for preparing mineral potential map. Using GIS not only organizes the information related to mineral exploration but also has the ability to produce and integrate information layers in different models with more precision and speed and supports spatial decision makings. In this article mineral potential map of Now Chun copper prospect has been produced for determination of drilling points. Used layers in this study include rock type, structure, alteration, mineralization indicators, anomaly zone of chargeability and apparent resistivity and metal factor, anomaly of copper and molybdenum and $\mathrm{Cu}-\mathrm{Mo}$ additive indexes. After information preparation, Factor maps were weighted and integrated in the inference network. Integration use of Fuzzy logic and index overlay operators in inference network can eliminate defects in other models and provide more flexible integration of factor maps. Regarding to produce mineral potential map, mineral potential zones of porphyry copper were located in north-east parts of studied area. Eventually, the degree of correlation between mineral potential map and those operated exploration boreholes have been estimated for two different classes, 63.16% and 64.52%. Comparison between the high potential points indicated by our mineral potential maps with those previous drilled boreholes reveals about 26% discorrelation. It means that if such present study had been done before any drilling operation, it could have saved 200,000\$ just for drilling expenditure.

Keywords: GIS, Mineral Potential Map, Fuzzy Logic, Now Chun
For Persian Version see pages 179 to 188

* Corresponding author: G. R. Elyasi; E_mail: ghrelyasi@yahoo.com
contamination processes. In terms of geochemistry, the variations of $\mathrm{Rb}, \mathrm{Sr}, \mathrm{Pb}$ and Hf confirm this phenomenon as well. Based on low topography of volcanic rocks, suture zone, strike-slip faults, and petrologic evidence, low degrees of partial melting in source and crustal contamination in the region, the magmatism occurred in a tensional tectonomagmatic environment. Local tension and opening along the strike-slip fault zone provided a way for ascending of magma to the earth surface.

Keywords: Bijar, Alkaline Series, Sanandaj-Sirjan, Contamination
For Persian Version see pages 151 to 156

* Corresponding author: M. H. Razavi; E_mail: razavi@saba.tum.ac.ir

Geochemical and Mass Changes at the Sar-Faryab Bauxite Deposit,Kohgeloye and Bovair-Ahmad Province: Using Al, Ti, Zr and Y Geochemical Characteristics

A. Zarasvandi ${ }^{1{ }^{*}}$, H. Zamanian ${ }^{2}$, E. Hejazi ${ }^{3}$ \& A.H. Mansour ${ }^{1}$
${ }^{1}$ Department of Geology, Faculty of Earth Sciencees, Shahid Chamran University, Ahvaz, Iran
${ }^{2}$ Department of Geology, Faculty of Sciencees, Lorestan University, Khoramabad, Iran
${ }^{3}$ Department of Geology, Islamic Azad University, Khoramabad, Iran
Received:2008 September 15
Accepted: 2008 January 26

Abstract

The Sar-Faryab bauxite deposit is located in 250 km east of Ahvaz city in Kohgeloye and Bovair-Ahmad Province, Iran. Structurally the deposit is located in the Zagros Simply Fold Mountain Belt and was formed between the Ilam and Sarvak Formations. The bauxite horizon in this deposit consists of marly limestone, argillite, ooliticPisolitic, yellow, red and white bauxite. This study uses the geochemistry of immobile elements ($\mathrm{Al}, \mathrm{Ti}, \mathrm{Zr}$ and Y) to trace the precursor rock of the bauxite deposit and to calculate the mass changes that took place during weathering and bauxitization. The result indicates that $\mathrm{Si}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{Na}$ elements are depleted and $\mathrm{Al}, \mathrm{Fe}, \mathrm{Ti}$ elements are enriched during the weathering and bauxitization. Geochemical data show that argillaceous debris in the Sarvak limestone can be the source of the Sar-Faryab bauxite deposit.

Keywords: Geochemical Variations, Bauxite, Sar-Faryab, Mass Changes
For Persian Version see pages 157 to 164
*Corresponding author: A. Zarasvandi; E-mail: zarasvandi@yahoo.com

Inverse Modeling of Magnetic Data Using Subspace Method

A. Nejati Kalateh ${ }^{1 *}$, M. Mirzaei ${ }^{2}$, N. Gouya ${ }^{1}$ \& E. Shahin ${ }^{3}$
${ }^{1}$ Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
${ }^{2}$ Science Faculty, Arak University, Arak, Iran
${ }^{3}$ Geological Survey of Iran, Tehran, Iran

Abstract

In this paper we used orthogonal basis functions and expansion coefficients for inverse modeling of magnetic data. The basis functions chosen are normalized eigenvectors of second derivation of the objective function (Hessian matrix) calculate for an initial model. Limited number of basis vectors obtained in this way defines a new subspace in model parameters space. Anew objective function is defined in term of these new parameters and minimized in subspace of original space. As in geophysical inverse problems we need to inverse matrixes that are functions data and geometry of data and model parameters. The matrix inversion in new subspace of the original space will be better conditions due to less dimensionality in the inversion. Since the most significant eigenvectors corresponding the largest eigen values in Singular Value Decomposition (SVD) of matrixes. Others eigenvectors have less influence in fitting data or lead inversion procedures to local minima. With apply subspace method inversion will be fast and stable against the noise. The efficiency of the method is tested with synthetic and real magnetic data (acquired from Moghan area, north-west of Iran). The results proved fast convergence and stability of inversion against the noise.

