تحليل هندسى و جنبشى تاقديس سلطان در كمربند چچين خور ده ــرانده زاند و استفاده از آن در بر آور د بستكى كروه دهر درم

نوشته: عباس افلاطونيان"، على يساقى* و عبدالحسين احمدنيا**

The Geometric and Kinematic Analysis of SoltanAnticline in Zagros Fold-Thrust Belt; An Evaluation of the Dehram Group Closure

By: A. Aflatounian*, A. Yassaghi*, A.H. Ahmadnia**
* Department of Geology, Tarbiat Modares University, Tehran, Iran
** Exploration management, National Iranian Oil Company, Tehran, Iran

هدف اكتثافى مطرح مى كند.
كليدواروها: تاقديس سلطان، كمربند جين خورده ــرانده زاگرس، تحليل هندسى و جنبشى، بستگى قائم و افقى، گروه دهر م.

Abstract

Soltan anticline is located in northwest of the Zagros fold-thrust belt in the Lorestan Province. Geometric and kinematic analyses of the anticline have been carried out to estimate the closure of the Dehram Group in order to evaluate its potential for gas reservoirs. Geometric analyses of the Soltan anticline indicate that the fold geometry is rather similar to that of the Trishear type of fault propagation folds. However, considering the competency contrasts between various rock units in the anticline that control the fold's geometry, together with the rounded and relatively wide outline of the anticline at surface, the Soltan anticline can

also be compared to faulted detachment folds that hold the same geometry as the fault propagation folds. On the other hand, the very low values of finite strain measured on clastic rocks collected from the anticline and its typical smaller scale fold constraint, and the low values of the layer parallel shortening are comparable to the kinematics of fault propagation folds. Based on the data from the geometric and kinematic analyses, seven structural cross sections across the anticline are drawn, and using the cross sections, a structural contour map and a 3D model for Dehram Group are constructed. The calculated values for the anticline closure prohibits this structure as an appropriate host to gas reservoirs, unless the Soltan anticline is connected to the adjacent, Rit, anticline.

Key words: Soltan Anticline, Zagros fold-thrust belt, Geometric and kinematics analysis, Vertical and horizontal closure, Dehram Group.

اطاعات زير سطحى مناسبى مانند اطلاعات زمين فيز يكى و دادههاى چامهاى اكتشافى از اين تاقديس وجود ندارد، تنها راه دستيابى بـي به اين مهم و و تحليل تاقديس از نظر يك هدف اكتشاف ذخيره هيدرو كربنى، بررسى وضعيت ساختارى تاقد يس با استفاده از برداشت هاى صحرايى در قالب تحليل هندسى و جنبشى آن است. هدف از اين مقاله تحليل هندسى و جنبشى تاقديس سلطان و استفاده از آن در بر آورد بستگى تاقديس در افق سازند دهرم آن است كه به عنوان افق ذخيره گازى مطرح مىباشد. براى اين منظور، هفت بيمايش ساختارى عمود بر محور تاقديس صورت گرفته است. با استفاده از دادههاى ساختارى برداشت شده در اين پيمايشها، نقشه ساختارى در مقياسه:ا، تهيه شده (شكل ب) و همحِخنين تحليل هندسى و جنبشى تاقديس صورت گرفته است. بر اساس چخنين تحليل هايى از تاقديس، هفت برش عرضى ساختارى بر تاقديس رسم شده است. سپس به منظور بر سیى سلامت و محاسبه بستگگى افق دهرم اين تاقديس، بـا استفاد استاده از اين برش هـ ها نتشه هم تراز زيرزمينى(Under Ground Contour Map) و يكك مدل سه بعدى براى سطح بالايى گروه دهرم منطقه تهيه شده است.

هندسه ساختارى تاقديس سلطان

تاقديس سلطان يك چجينباريكك كشيدهباروندعمومى باختر، شمال باختر -خاور، جنوب خاور است كه در بين تاقديسهاى نغتى سر كان در شمال باختر و ماله كوه در جنوب باختر قرار دارد (شكل Y). رخنمونهاى سنگی آن آن بهطور عمده واحاههاى سنگى كرتاسه و ترشيرى و شامل سازندهاى سرو كك، سور گاه و ايلام در هسته تاقديس، سازندهاى گوريی، بخش امام حسن، اميران، تله زنگک، كشكان، شهبازان و آسمارى در پیلوهاى شمالى و و جنوبى و سازند

كمربند چین خورده ـ رانده زاگرس به عنوان بزر گترين منط ايران در اثر برخورد صفحه عربستان و فلات ايران در ترشيرى پسين 1^.. (Stocklin, 1968)، به صورت رشته كوهى به طول تقريبى (St كيلومتر و بر روى سكوى آرام قارهاى عربستان تشكيل شده است
 بزر گڭ، منظم و جوان و همحْنين ذخاير هيدرو كربنى موجود در در بسيارى از از

 (IMAF تاقد يسى متمر كز هستند، لذا شناخت دقيقتر اين ساختارها و تحليل هندسى و

جنبشى آنها از بنيادى ترين موضوعات زمينشناسى نفت زاگرس است. تاقديس سلطان در بخش ميانى ناحيه لرستان در شمال باختر فروافتاد گیى دزفول قرار دارد (شكل (). اين منطقه در بين طول جغرافيايى - FV. FV تا است. ساختارهاى ناحيه لرستان روند شمال باختر - جنوب خاور دارند. در اين محدوده، آهك هاى آسمارى با سن ائوسن ـاليگوسن و سازندهاى مزوزو ييك؛، بيشتر ارتفاعات را تشكيل مىدهند و تاقديسهاى آهكى مقاوم ويز گیهاى

ريختشناسى اين منطقه را در كنترل دارند (McQuarrie,2004). در تاقديسهاى سر كان و مالهكوه كه در شمال و جنوب تاقديس سلطان قرار دارند (شكل Y)، به ترتيب توسط سه و دو حلقه چاه، از گروه بنگستان نفت استخراج مى شود. در تاقديس سلطان، سازندهاى ايلام و سرو كك از

 سازند دهرم آنها گزارش شده است، لذا تاقديس سلطان نيز مى تواند از اين نظر بهعنوان يك هدف اكتشاف مخزن گازى مطرح باشد. با توجه به اين كه

بيشتر از •ا مى باشد و چیينهاى خم گسلى و انتشار گسلى در اين گروه قرار دارد.
با توجه به بيشترين طول موج تاقديس سلطان، ميزان نسبت طول محور حدود

 تاقديس و بر گشته بودن اين پهلو نيز مطابقت دارد. لذا به نظرمى رسد كه تاقديس سلطان همحچون بيشتر تاقديس هاى زاگرس از انواع مرتبط با گسلش راند گى باشد. در پهلوى شمالى تاقديس سلطان نزديك روستاى كلك بـر بيشه عليا (در مسير برش ساختارى'CC، شكل با گ) گسلش راند گیى همر اه با تاقديس فراديوارهاى و ناوديس فروديوارهاى ديده مى شود. تحليل هندسى و جنبشى اين گسل و چین همراه (شكل \&)، به عنوان الگويى مناسب جهت دست يابى به تحليل هندسى و جنبشى تاقديس سلطان و رسم برش هاى ساختارى، مورد برر سى قرار گرفته است. براى تشخيص هندسه تاقديس سلطان و چجين كلك بيشه، از نمودارهاى استفاده شده است. با قرار گيرى تاقديس سلطان در Jamison (1987)
 وجود گسلش راندگى در پهلوى جنوبى اين تاقديس را نشان مى دهند و
 مربوط به پين جدايشى براى شناخت نوع چين ها، خوددارى شده است. پارامتر هاى مورد استفاده براى تشخيص هندسه چین با با استفاده از نمودارهاى (α () و يا شيب پهلوى خلفى (${ }^{\text {(}) ، ~ ز ا و ي ه ~ ب ي ن ~ ي ه ل و ه ا ~}$ در پهلوى پيشانى نسبت به پهلوى خلفى است. اين پارامترها برای تاقديس سلطان و چين كلكك بيشه از برشهاى عرضى ساختارى رسم و برداشت هاى Jamison (1987) صحرايى استخر اج شده (جدول ا) و بر روى نمودارهاى پياده شده اند (شكل ه). محاسبه تغيير ستبر ای پهلوى پيشانى بر مبناى ستبراى حقيقى سازند و توجه به تأثيرات تويو گر افى صورت گر فته است (شكل 9). جپنان كه در نمودارهاى شكل هم مشاهده مى شود تاقد يس سلطان در تمام مسيرها در محدو دهاى واقع شده كهن ناز كك شد گى در پیلوى پيشانى رانشان مى دهد. اين تاقديس در نمو دارهاى چیين هاى خم گسلى و چیين هاى انتشار گسلى حمل شده (Fault Bend and Transportad Fault Propagation Folds) در مسيرهاى AA و 'BB' در محدوده با حدود צY درصد ناز كك شدگى، در مسير "FF'F در محلدوده با حدود . درصد ناز كك شد مسيرها در محدوه با حدود نمودار مربوط به چين هاى انتشار گسلى (Fault Propagation Folds) نيز تاقديس سلطان در مسيرهاى AA و ${ }^{\prime}$ و ${ }^{\prime}$ در مححدوده از • تا ها درصد ناز كك

برداشت هاى صحرايى نشان مى دهند كه شيب پهلوى شمالى تاقديس متغير
 25/038 (Dip/Dip Direction) باخترى 15/010 است. در همين سازند شيب پهلوى جنوبى نيز متغير است. در بخش باخترى 35/203 است، به سمت بخش ميانى لايه ها بر گشته شده و موقعيت آنها 41/010 مى شود، در بخش ميانى بر گشتگى لايه ها ا2 ادامه داشته و موقعيت آنها 22/015 است و در بخش خاورى لايه ها دوباره به حالت عادى بر گشته و موقعيت آنها 65/210 است (شكل r). در بخش جنوب باخترى تاقديس سلطان يك گسل راندگى (گسل TF1) با شيب به سمت شمال ـ شمال خاور به طول بيش از V كيلومتر وجود دارد، اطلاعات مربو ط به اين گسل در هيج قسمت از مسيرهاى پيمايش قابل برداشت
 در مسير بيمايش "FF وجود آن را نشان مى دهد (شكل Y). راستاى تقريبى اين گسل شمال باختر - جنوب خاور است. در بخش جنوبخاورى تاقديس نيز گسلى (گسل TF2) وجود دارد كه باعث رخنمون دوباره سازندهاى
 هه درجه به سمت جنوب باختر در مسير پيمايش'DD برداشت شده است. با توجه به جابهجايى كه گسل در واحدهاى سنگى به وجود آورده است،
 بر مبناى موقعيت لايهبندى ها در پهلوهاى شمالى و جنوبى تاقديس در مسيرهاى مختلف بر روى استريونت (شكل ب)، مشخص شد كه تاقديس سلطان به طور كلى يكك تاقديس نامتقارن و با تمايل (Vergence) بهسمت جنوب- جنوب- باختر است. مقايسه موقعيت محور و سطح محورى تاقد يس سلطان در سه مسير CC'، AA و GG' نشان مى دهد كه در روند محور اين تاقديس حدود I Y درجه چرخش صورت گرفته است، اين موضوع بر روى نتشه زمين شناسى منطقه (شكل Y) نيز قابل مشاهده است. همحِخنين با تو جه به زاويه بين پهلويى به دست آمله در مسيرهاى مختلف (جدول ()، تاقديس در مسير "FF در مححدوده جين هاى بسته، در مسير EE' در مرز چیين هاى بسته

و باز و در بقيه مسيرها در محدوده چين هاى باز قرار دارد. بر اساس نسبت طول محور چیين به نصف Sattarzadeh et al. (2000) طول موج آن (Aspect Ratio) ، چحين هاى زاگرس را در دو گروه قرار

داده اند:
كه در آنها نسبت ياد شده براى چين ها در تمام مقياس ها 1 بين ه تا • • مى باشد و هين هاى جدايشى (Detachment Folds) در اين گروه قرار دارند. Forced Folds .r كه در آنها اين نسبت براى چین ها در تمام مقياس ها

در پهلوى بيشانى را نشان مى دهد (شكل ه). اين تاقديس در نمودارهاى
 درصد ناز كك شدگى و در نمودار مربوط به چین هاى انتشار گسلى در V.

 اندازه گيرى شده است. براى لايههاى مختلف از حدود זا . Y. متوسط، مقدار ناز كك شد گیى اين پهلوى چين حدود IV درصد بهدست آمده
 چين هاى انتشار گسلى هماهنگى دارد. با توجه به نمودارهاىJamison (1987)، تاقديس سلطان و چين كلكك بيشه در گروه چين هاى انتشار گسلى قرار مى گيرند ولى اين نمودارها تمام ساختارهاى چین ـ گّل را شامل نمى شوند. در مورد چین ها شده مىتوان از دو ويزگى، وجود تاقديس فروديواره و جابهجايى ثابت تمام واحدها (Mitra, 1990) در اين چجين ها كمك گرفت. در تاقديس سلطان به علت عدم وجود اطلاعات زير سطحى مناسب، امكان مقايسه وجود ندارد اما در برشى كه از چين كلك بيشه وجود دارد(شكل ب)، تاقديس فروديواره در واحاهاى زير راند گیى كه پهلوى پيشانى چین را بريده است، ديده نمى شود و جابهجايى ها نيز بر روى راند گیى ثابت نيستند. بر اين اساس اين چين راين در گروه
چين هاى جدايشى حمل شده قرار نمى گيرد. براى مقايسه اين دو چين با چیين هاى Break-Thrust و Fault-Arrest و همجنين براى كمكك به تأييد مدلى كه تا كنون به دست آمده، بهترين روش استفاده از تحليل جنبشى اين دو چین است.

تحليل جنبشى تاقديس سلطان

به منظور تحليل كرنش تاقديس سلطان نمونههاى جهتدار از واحدهاى آوارى سازند اميران و كشكان در پهلوهاى شمالى و جنوبى برداشت شده
 تا H (شكل Y) نمونه هاى جهتدار تهيه شد. محاسبه مقادير كرنش نهايى بر روى مقاطع ناز كك نمونه ها در صفحه XZ كه صفحه بيشترين ميزان كرنش نهايى است، صورت گرفته است (شكل Vـالف). همحچنين در چین كلكُ بيشه به منظور مطالعه كرنش در سه بعد در نقاط A، B، C، D، E و H، مقطع ناز كك ميكروسكويى از صفحه YZ بيضوى كرنش نهايى نيز، تهيه شد. بعد سوم كرنش يعنى ميزان كرنش نهايى در صفحه XY نيز از رابطه مو جود محاسبه شده است. با توجه به مقاطع ناز كك تهيه شده، لايه هاى آوارى سازين از نوع آهك هاى سيليسى مى باشند كه به سمت باختر از ميزان سيليس آنها به

شد گی، در مسير "FF'F در محدوده با حدود •r در صصد ناز كك شد گی و در
 با تو جه به مشاهدات صحرايى مقدار ناز كك شدگى به دست آمده در نمودار چين هاى انتشار گسلى با تاقديس سلطان هماهنگى بيشترى دارد ولى براى
 تاقديس سلطان در سطح نيز اندازه گيرى شده و با مقدار به دست آمده از
نمودارها مقايسه شود.

با توجه به گسترش سازند اميران در منطقه و قابليت تغيير ستبراى آن، از اين واحد سنگى براى اندازه گيرى مقدار ستبر شدگى يا ناز كـ شد گی در پـهلوى پيشانى چین در سطح، استفاده شده است. البته ميزان ناز كك شدگى ساز سازند اميران نيز فقط در مسير CC قابل اندازه گيرى است زيرا در بقيه مسيرها به
 ستبراى اين سازند از بين رفته است و يا به علت تغيير شيب از حالت عادى به بر گشته (مانند مسيرهاى'AA و BB')، ستبراى آن قابل اندازه گيرى نيست. براى تعيين تغيير ستبر ای سازند اميران در مسير 'CC، اختلاف ار تفاع تويو گر افى و عرض لايه از نتشه زمين ساختارى منطقه (شكل Y) محاسبه شده و شيب لايه بندى بر اساس اندازه گيرى هاى صحرايى و مقادير مو جود در نقشه زمين ساختارى مى باشد. شاخص (b) براى پهلوى خلفى و شاخص (f) بر ای پهلوى پيشانى است. اگر مقدار t بيشتر از t باشد غير اين صورت پپهلوى پيشانى ستبر شده است. شاخص (a) ميز ان تغييرات بر مبناى .․ ااست. اگر مقدار به دست آمده (a) را از . . ا كسر كنيم، مقدار ناز كك شد گى و يا ستبر شد گى به دست مى آيد. اطلاعات مربوط به برش عرضى ساختارى'CC در تاقديس سلطان به شرح

$$
\text { زاويه بين پهلوها } \gamma=38^{\circ} \text { ز }
$$

ستبراى سازند اميران در بهلوى خلفى (ستبراى سازند اميران در بهلوى بيشانى (t
$\mathrm{t}_{\mathrm{b}} \times \mathrm{a} / 1 \ldots=\mathrm{t}_{\mathrm{f}}$
Q $\Delta \Delta / ヶ \Lambda \times \mathrm{a} / 1 \cdots=$ VGY/AY
$a=\vee Я Y \wedge r \div 9 \Delta \Delta / Y \wedge=V Q / \wedge \Delta$
$\nu Q / \wedge \Delta-1 \cdots=r \cdot / \wedge \Delta \%$
در ناز كك شدگى سازند اميران در پهلوى بيشانى تاقديس سلطان در مسير برش ساختارى CC خنان كه مشاهله مى شود مقدار ناز كك شد گی محاسبه شده نيز با مقدار ناز كـ شدگى بهدست آمده در نمودار چین هاى انتشار گسلى هماهنگى بيشترى دارد.
چین كلكك بيشه نيز در تمام نمودارها در محدودهاى واقع شده و ناز ككشدگى

با مقايسه مقادير بهدست آمله براى تاقديس سلطان و چجين كلككبيشه كه تفاوت ناجيزى بين مقادير كرنش نهايى در پهلوى پيشانى و پهلوى خلفى
 Thorbjornsen \& Dunne (1997) توسط (شكل ^)، مىتوان چحنين نتيجه گرفت كه تاقد يس سلطان و چين كلك بيشه هر دو از نوع چیين هاى انتشار گسلى هستند، زيرا در مدلهاى ديغر اختلاف كرنش بين پپهلوهاى پيشانى و خلفى زياد و كاملاُ محسوس است. اين نتيجه، با نتيجه بهدست آمده از تحليل هندسى توسط نمودارهاى (1987) Jamison هماهنگك است و

 شايد بهتر باشد اين چجينها را از نوع چیين هاى انتشار گسلى در حال پيشرفت يا نفوذ(Propagation Folds Breaking Through of Fault) ،كهتو سط معرفى شدهاند، در نظر گرفت.اين چين ها Suppe \& Medwedeff (1990) خود نيز انواع مختلفى دارند كه از بين آنها، تاقديس سلطان و چچين كلككبيشه، با نوعHigh-Angle Breakthrough) Steep-Limb Breakthrough (شكل qـ الف) كه توسط Mitra (2002) با عنوان گسل سه برشى چین انتشارى معرفى شدهاند (شكل هـ ب)، هماهنگى بيشترى دارند. Mitra (2002) (Faulted Detachment Folds) ظاهر شبيه چیين هاى انتشار گسلى هستند و به همين علت در تفسير هندسه چچين در مناطقى كه اطلاعات كافى وجود نداشته باشد، ممكن است اشتباه رخ دهد. ايشان با ذكر ويز گیهاى كليدى چیین هاى انتشار گسلى و همحچنين
 هم مقايسه كرده است (شكل • او جدول ؟). همحْنين با ارائه يك مثال (شكل (1) بيان مى كند كه براى Mitra (2002) يك ساختار، فقط بر اساس اطلاعات سطحى و اطلاعات زير سطحى نا كافى، هر دو مدل چینههاى انتشار گسلى و چیينهاى جدايشى گسل خورده را مى توان در نظر گرفت و انتخاب تغسير نهايى به اطاعاعات زير سطحى بيشتر و آگاهى از چينه شناسى مكانيكى منطقه بستگى دارد. در تاقديس سلطان نيز به علت عدم دسترسى به اطلاعات زير سطحى مناسب و با توجه به تحليل هاى هندسى و جنبشى صورت گر گفته، و همحچنين به علت هندسه نسبتاً گرد و باز اين تاقديس (شكل آ I) و وجود اختلاف مقاومت در بين واحدهاى مختلف از سطح تا عمق، هر دو مدل چين انتشار گسلى نوع سه برشى و چین جدايشى گسل خورده را مى توان در نظر گرفت، ولى در مورد چین الگوى كلكك بيشه، از آنجا كه در ناوديس فروديوارهاى فرونشينى محسوسى مشاهله نمى شود و همحچخنين با توجه به توسعه گسل هاى

شدت كم شده است، به همين علت مقاطع تهيه شده در مسيرهاى 'GD' تا براى اندازه گيرى كرنش قابل استفاده نيستند و فقط از مقاطع مسيرهاى ' B B و استفاده شده است. با تو جه به توزيع بلورهاى كوارتز در زمينه كربناتى- CC' رسى، محاسبه كرنش نهايى به روش Dunnet,1969) Fry) صورت گرفته است. اين روش براى دانه هاى كوارتز آوارى در زمينه غير سيليسى مانند نمونه سنگك هاى منطقه مطالعه روش مناسبى است (Dittmar,1994). در هر مقطع، توزيع دانههاى كوارتز بهعنوان نشانگر مناسب، انتخاب و با استفاده از نرمافزار Digitizer، قطر بزر گك و كو چكك اين دانهها اندازه گیرى شد تا بهعنو ان دادههاى ورودى به نرمافز ار Erslev,1988) Instrain) به كار گرفته شوند. اين نرم|فزار قادر است مقدار ميانگين بيضوى هاى موجو د، مقدارR از روشFry و نيز R از روش Erslev, 1988) Fry) بهنجار شده را محاسبه
 كه در آنها بلور هاى كوارتز داراى جورشد گى ضعيف در زمينه كربناتى رسى قرار دارند و عنايت به وجود شواهد انحلال فشارى، روش بهنجار شده بهترين روش بر ایى محاسبه كرنش نهايى منطقه است. نمونه ایى از رسم بيضى

¢ بر اساس مقادير كرنش نهايى به دست آمده (جدول Y و شكل Y)، كرنش در تهالوى پيشانى تاقديس سلطان نسبت به پیلوى خلفى آن افز ايش نا چیيزى نشان مى دهد، در مورد چیین كلككبيشه نيز اين فرايند وجود دارد. چֶنان كه در شكل F بريده است، هم در لايه هاى فراديواره و هم در لايه هاى فروديواره، كرنش به حداكثر رسيده و با فاصله از گسل از مقدار كرنش كم شده است كه البته ميزان كاهش ناجيز است. همحچنين مقايسه كرنش هاى نهايى اندازه گيرى شده در دو بخش فراديواره و فروديواره گسل نشان مىدهد كه فراديواره گسل، كرنش بيشترى را متحمل شده است. نكته ديگرى كه از مقادير بهدست آمده بر آورد مى شود، ميز ان پايين كرنش نهايى درمنطقه است. اين ويزَ گى را مى توان با پايين بودن مقدار LPS در منطقه توجيه كرد. از سوى ديگر نمودار فلين (Flinn diagram) تهيه شده براى نمونه هاى برداشت شده از اطر اف گسلش راند گى مو جود رد پهلوى بيشانى چين كلك بيشه 1>K ≥ 0 (شكل V V (ج) نيز نشان مىدهد كه نمونههاى برداشت شده در محدوده يعنى پهن شد گى ظاهرى(Apparent flattening) واقع مىشوند كه با موقعيت بيضوىهاى كرنش ورقههاى راندگى در مناطق يشش خشكى مطابقت دارد. مقدار كرنش در نواحى مختلف يك چین فراديوارهاى مانند پپهو هاى پيشانى و خلفى، و همحچنين ناحيه لولايى، متفاوت است. با استفاده از ميزان اين اختلاف مى توان به سبك چیين خوردگى مر تبط با گسلش راند گى پیى برد.

زمين فيزيكى مناسب و اطلاعات چاه در تاقديس سلطان، اين برشهاى ساختارى با در نظر گرفتن مدل هندسى تحليل شده، تأثير افقهاى جاى جدايش
 اميران هستند) و اطلاعات ساختارى سطحى مسيرهاى بيمايش (شكل ب)، رسم شدهاند (شكل ז1). مسير اين برش هاى عرضى ساختارى كه با مقياس
 همان طور كه در شكل r| آديده مىشود، هندسه تاقديس سلطان بر روى سازند گرو كه سطح جدايش ميانى منطقه است بر اساس مدل چین گسلى نوع سه برشى يا نوعSteep-Limb Breakthrough و در زير اين Faulted Detachment (سازند بر اساس مدل جينهاى جدايشى گسل خور (Folds راند گى F1، F2 و F2 بر ساختار تاقديس سلطان تأثير گذاشتهاند. در برش هاى ساختارى 'AA تا 'DD گسل راند گی F1 با شيب بهسمت شمال، شمال خاور در خلال عبور از شيل هاى تقريباً افقى سازند اميران با افزايش ميزان كرنش در نو كك اين گسل، قفل شده و جهت ادامه حر كت بهسمت شمال ـ شمال خاور تغيير مسير داده تا گسل F2 را با شيب بهسمت جنوب ـ جنوب با باختر، به وجود آورد. اين گسل در مراحل اوليه تشكيل خود يك چچين كوچك را را كه به احتمال زياد از نوع چين هاى گوش خر گوشى (Rabbit Ear) مى باشد در سازندهاى جوان تر ايـجاد كرده است. چنان كه ديده مى شود در اين برش هاى ساختارى حالت گوه مانند بين گسل هاى F1 و F2 شبيه پهنههاى سه گوش Intercutaneous) از نوع گوههاى داخل پوستهاى (Triangle Zones) Thrust Wedge شاخه فراديوارهاى گسل F1 با راستاى جابهجايى مشابه آن تشكيل شده است. اثر جابهجايى اين گسل را مى توان با تغيير شيب لايههاى سازند اميران از حالت عادى تا قائم و بر گشته در سطح مشاهده كرد انـي بهسمت برش هاى ساختارى EE' و FFF'F، به تدريج از فعاليت گسل F1 كاسته
 شدن به دماغه خاورى تاقديس ماله كوه باشد جايى كه از ميزان جابهج ايّى گـي F3 كاسته شده است. در اين دو برش، بيشتر جابهجايى بر روى گسل F1 متمر كز شده است كه باعث رخنمون گروه بنگستان و حذف ستبراى زيادى از سازندهاى گوريى و اميران شده است (شكل זا). در برش ساختارى GG به علت فراخاست تاقديس ماله كوه و فشردگى ناوديس بين آن و تاقديس سلطان، گسل F1 تشكيل نشده و يا در صورت تشكيل، فعاليت چندانى نداشته است و تقريباً تمام جابهجايى بر روى گسل F3 مورت گر گرفته است. تغييرات جابه بر روى گسل F3 در طول تاقديس سلطان باعث شده است كه اين تاقديس در سطح و در مسيرهاى مختلف بهصورت يك چين بسته تا باز تغيير شكل پيدا كند.

مرتبط با چين خوردگى (Mitra, 2002) در فروديواره اين ساختار كه مشابه ساختارهاى توسعه يافته در پهلوى پيشانى پرشيب تا بر گشته چين هاى انتشار گسلى (McClay, 2003) مى باشند، شايد بهتر باشد اين ساختار را يك چین انتشار گسلى از نوع سه برشى در نظر گرفت. بهطور كلى در مورد چين هاى زاگرس(2004) Sherkati and Letouzey بر اين باورند كه، وجود ناوديس هاى فروديواره، گسل هاى راند گی پرشيب و تنگگ شد گى چین ها به واسطه چرخ خش پپهوها و مهاجرت لو لا، مشخصه انتقال رفتار دگرشكلى از چين خورد گی جدايشى به پین خورد گی پيشروند انتشار

 ارائه شده است. در واقع ايشان اين دو نوع پیين خورد گی را مشابه هم در نظر مى گيرند. McQuarrie (2004) نيز معتقد است كه دامنه چين هاى

 (McNaught Mitra, 1993; Wallace \& Homza, 1997)
موضوع دلالت بر چجين خورد گى جدايشى گسل خورده دارد.

تحليل برشهاى ساختارى براى بر آورد ميزان بستگى تروه دهرم تاقديس سلطان

براى مطالعه گروه دهرم تاقديس سلطان كه شامل سازندهاى فراقون با سن
 منطقه است، نياز به اطلاعات عمقى اين تاقديس است. از آنجا كه اطلاعات زير سطحى زمينفيزيكى مناسبى براى تاقديس سلطان وجود ندارد، اين اطلاعات بر اساس نتايج مطالعات هندسى و جنبشى اين تاقديس و هفت برش عرضى ساختارى ترسيمى تهيه شدهاند. بدين منظور اطلاعات عمقى مربوط به سطح بالايى گروه دهرم از برش هاى ساختارى برداشت و نتشه همتراز زيرزمينى (Under Ground Contour Map) براى سطح بالايى گروه دهرم منطقه تهيه شده است تا به كمكك آن ميز ان بستگى قائم و افقى اين گروه در تاقديس سلطان محاسبه گردد. برش هاى عرضى ساختارى مناسبترين ابزار براى ارائه هندسه ساختارى چین ها بويزه در عمق است، از اين رو در بيشتر بر برسى هاى مربوط به به اكتشاف ذخاير هيدرو كربنى در مناطق پيش خشكى با تو سعه تله هاى ننتى تاقديسى، نتش بسيار مهمى دارند. اين برشها بهطور تقريبى عمود بر امتداد محور چین ها رسم مى شوند. براى رسم اين برشها در تاقديس سلطان از روش يا روش قوس كه براى چینههاى موازى به كار میرود، استفاده شده است. به علت عدم وجود هر گونه اطلاعات زير سطحى مانند اطاعاتات

گورپی و اميران بهعنوان سطوح جدايش ميانى كمزرْفا، شيب پهلوى جنوبى
 كه در اثر آن لايههاى مقاوم سازندهاى تلهزنگ، كشُكان و آسمارى كه

 فروديواره روى مىدهد. براى شروع لغزش، تأثير فرسايش در افر افق آسمارى اجتناب نايذذير است. در اثر ادامه جابهجايى بلو كك فراديواره و همحتنين عملكرد نيروهاى گرانش و فر سايش، لايه هاى بر گشته به پشت خميده شده و و
 تحليل تكامل تاقديس سلطان در برش ساختارى "FF'F نشان مى دهد كه هندسه و موقعيت مكانى تاقديس تشكيل شده در واحدهاى سطحى (گروه

 شده متفاوت است، لذا در مكانيابى حفارى هاى اكتشافى و بهرهبردارى بايد لحاظ شود. بر همين مبنا، بر آورد بستگى قائم و افقى اين گروه با توجه به چحنين تحليلى صورت گرفته است.
نقشه همر تراز زيرزمينى (Under Ground Contour Map) Structural Contour) نقشه همتراز زيرزمينى يا نقشه همتراز ساختارى (Map
 مبنايى كه بهطور معمول سطح تراز درياها است، نشان مىدهند. هندسه خطوط همتراز در اين نقشهها معرف هندسه ساختارى افق موردنظر است. در نتشه همتراز ساختارى، در تاقديسها مساحت آخرين خط هم تراز بسته، بستگى
 هندسه تاقد يس بستگى دارد. همحچنين فاصله قائم بين بالاترين نقطه ساختارى يا

 در منطقه تاقديس سلطان بر اساس برش هاى ساختارى رسم شده، اطلاعات عمقى مربوط به سطح بالايى گروه دهرم در تمام آنها برداشت و نقشه هم تراز
 زمين شناسى منطقه (شكل Y)، نشان مىدهد كه هندسه تاقديس در عمق از
 خاور، جنوبخاور و بهسمت تاقديس ريت جابهجا شده است و تاقديس
 است كه توسط يك زين (Saddle) از آن جدا شده است. پِس از رسم نقشه همتراز زيرزمينى گروه دهرم، اين نقشه در نرم|فزار

همانطور كه درتمام برشهاى ساختارى ديده مى شود (شكل سا)
 در رده 1B تقسيم بندىRamsay (1967) قرارمى گيرند ولى در لايههاى تبخيرى و شيلى كه شكل پذير تر هستند و به عنوان سطوح جدايش ميانى در
 مقاومت ميان واحدهاى مقاوم و نامقاوم، با تشكيل گسل هاى راند گیى در اين سازندها و افزايش ستبراى آنها در لولاى تاقديس، منجربه پديد آمدن سبك پیين خورد گى غير مو ازى و حالتى مانند چیین هاى مشابه در تقسيمبندى
 چجين هاى مشابه دروغين (Pseudo-Similar Folds) ناميده است. با استناد به مدل هاى Harrison and Bally (1988) شر كتى (INAF) كه
 مى دهند و بر اساس برشهاى ساختارى رسم شده (شكل rir) كه در آنها تأثير افقهاى جدايش ميانى در منطقه تاقديس سلطان لحاظ شده است، يك مدل تكاملى براى تاقديس سلطان در مسير برش ساختارى "FF'F ارائه شده
 لايههاى هم ستبرا بر روى سطح جدايش زيرين (سطوح شيلى كامبرين)، نخستين هسته چین موازى را شكل مى دهد. به تبع آن لايههاى نامقاوم بهسمت هسته تاقديس جريان مى يابند (شكل مرحله توسط ستبراى پوشش رسوبى كنترل مىشود. با افزايش دگرش
 مواد را مىدهند، به خمش خود ادامه مىدهد. در اين مر حله گسلش راند گیى (گسل F1) مى تواند براى متعادل كردن (Accommodate) كو تاه شد گیى

 گسل خورده(Faulted Detachment Fold) تحليل كرد. در اين مرحله كو تاهشد گى در واحدهاى نامقاوم بهعنوان تابعى از اختلاف مقاومت ميان
 جديد (مانند گسل F2)در سطح جدايش ميانى (سازند گرو) و تكرار فرايند ششكل flf أج در افق هاى بالاتر شود (شكل شاخه اصلى گسلش راند گی، در سطوح جدايش بالاتر (سازندهاى گوري؟ و اميران)، يك شاخه فرعى فراديوارهاى (گسل F3) از آل آن منشعب شده و جابهجايى بر روى آن صورت مى گيرد (شكلهاى Fاء د د و هـ). در اثر جابهجايى بر روى اين شاخه فرعى فراديوارهاى و همچچنين تأثير سازندهاى
(1970) (است. اين چجين ها در لايههايى كه شامل تناوبى از لايههاى مقاوم (Competent) و نامقاوم (Incompetent) هستند، رخ مى دهند. در حنين حالتى لايههاى مقاوم ستاى
 ستبراى لايههاى مقاوم، آثار لغزش در سطح تماس لايهها دلالت بر اين دارد كه تاقديس سلطان براثر سازو كار چین خورد گیى خمشى ـ لغزشى تشكيل شده است. تشكيل تاقديسهاى فرعى و گسل هاى راند گى بر روى شيل ها و مارنهاى
 جدايش ميانى، در منطقه است. در منطقه مورد مطالعه سطوح جدايش ميانى، در سبك چین خورد گى و تشكيل ساختارهاى سطحى تأثير گذاشتهاند. در اين منطقه هيج شاهدى از وجود نمكك هرمز وجود ندارد، بنابراين سطوح شيلى كامبرين مى تواند نقش سطح جدايش قاعدهاى را بازى كنند. همحخنين تبخيرى ها و شيلهاى زوراسيك و كرتاسه زيرين (مانند سازندهاى گوتنيا و گرو)، شيل ها و مارنهاى كرتاسه بالايى و پالئوسن (سازندهاى گوريى
 سطوح جدايش ميانى عمل كردهاند. بر اساس نقشه همتراز زيرزمينى رسم شده، ميزان بستگى قائم تاقديس سلطان حدود • • متر و ميزان بستگى افقى آن حدود شد، همحِنين بهترين موقعيت ساختارى براى حفارى اكتشافى در تاقديس سلطان كه مركز بالاترين يا بهعبارت ديگر كم زرفاترين خط همتراز بسته ساختارى در نتشه هم تراز زيرزمينى است، بين برش هاى ساختارى CC'
 با توجه به مقادير بهدست آمده، تاقديس سلطان حتى در صورت داشتن ذخيره هيدرو كربنى مناسب نيز به تنهايى به عنوان يك هدف اقتصادى مطرح نيست، البته در صورت اثبات پيوستگى تاقديس هاى سلطان و ريت با استفاده

از مواد هيدرو كربنى را ممكن خواهد كرد.

RMS رقومى شد و سپس دادههاى لازم برای ورودیى نرمافزار RMutoCAD از آن استخراج و در نهايت توسط اين نرم افزار يك مدل سه بعدى براى سطح بالايى گروه دهرم در منطقه تهيه شد (شكل 19).

 شده است. با توجه به مقاير بهدست آمده، تاقديس سلطان حتى در صورت داشتن ذخيره هيدرو كربنى مناسب نيز به تنهايى به عنوان يكك هدف اقتصادى
 و ريت (اثبات چنين پيوستگى بايد پس از انجام عمليات لرزهنگارى باز تابى اكتشافى از منطقه اين تاقديسها صورت گيرد)، بستگى ساختمانى عظيم و قابليت استحصال بيشترى از مواد هيدرو كربنى را ممكن خواهد كرد.

نتيجه كيرى

ور اساس تحليل هندسى توسط نمودارهاى Jamison (1987) وآى تحليل جنبشى از طريق محاسبه كرنش نهايى و مقايسه آن با مدل هاى ارائه شده براى تاقديس مرتبط با گسلش راندگىBarclay تـوسط Dunne \& Thorbjornsen (1997) كلكك بيشه در مسير برش ساختارى CC ، از نوع چين هاى انتشار گسلى هستند
 هماهنگى بيشترى دارند. بر مبناى تحليل برش هاى ساختارى Breakthrough در تاقديس سلطان، هندسه اين تاقديس در سطح با هندسه آن در زر رفايى كه واجد سنگك مخز ن هيدرو كربنى است (در زير سازند گرور) متفاوت است. اين تفاوت بهدليل اثر سطح جدايش ميانى كه در اينجا سازند گرو تحليل شده، صورت گرفته است، لذا هندسه اين تاقديس در زير اين سطح جدا جايش ميانى هندسه چیين هاى جدايشى گسل خورده(Mitra, 2002)، تطابق بهترى دارد.
 چچين هاى مشابه دروغين (Pseudo-Similar Folds)، معرفى شده توسط

جلدول ا- پارامترهاى اندازه گیرى شده مورد نياز براى تحليل هندسى چین توسط نمودارهاىJamison (1987) ، در مسير برش هاى ساختارى

דیי الگوى كلكّ بيشه	GG'	FF'F'	EE'	DD'	CC'	BB'	AA^{\prime}	نام برش عرضى ساختارى
80	76	67	70	71	78	79	84	
49	38	41	37	37	38	32	34	شيب پهلوى خلفى (a)
17\%	-	-	-	-	20\%	-	-	ناز كك شد

جدول r- مقادير كرنش نهايى اندازه گيرى شده در تاقديس سلطان

كرنش نهايى	صفحه كرنش	نمونه
$1 / \mathrm{FVY}$	XZ	نمونه آوارى سازند اميران در تهلوى جنوبى مسير بيمايش 'BB
1/991	XZ	نمونه آوارى سازند اميران در تهلوى شمالى مسير بيمايش'
1/fr	XZ	نمونه آوارى سازند اميران در يهلوى CC'جنوبى مسير بيمايشئ
1/ro	XZ	نمونه آوارى سازند كشكان در در جهلوى شماى مسير بيمايش '

چين هاى انتشار گسلى	چين هاى جدايشى گسل
هندسه نهايى چین بسته و گوشه دار	هندسه نهايى چهين باز و گرد شده
	طول موج چیین با ميزان كو تاه شد
بسيارى از هينهاى انتشار گسلى فقط يك نوع سازو كار چیين خور دیگى را تحمل مى كنتد	نيز تغيير مى كند
در واحدهاى داراى لايهبندى ناز ك و چينه شناسى مكانيكى به نسبت همگن تشكيل مى شوند و داراى د گرشكلى به صورت خمشى ـلغز ـلانى هستند (Flexural-slip)	به طور شاخص در واحدهاى با اختلاف مقاومت زياد تشكيل مى شوند
شكل گسل شكل چین را تعيين مى كند (Thorbjornsen \& Dunne, 1997) و واتنش چين خوردگى در نو كـ پاكان گسل باعث تشكيل اين چین ها مى شود	گسل در چین هاى از قبل موجود و تا پشت ناوديس فروديواره گسترش مى يابد
شيب پهلوى خلفى، معادل و يا كمتر از شيب گسل در واحدهاى گسل خورده است	
در ناوديس فروديوارهاى، واحدها نسبت به موقعيت اصلى و ناحيهاى خود فرونشينى ندارند و معكوس شدگى شيب نيز در آنها ديده نمى شود	در ناوديس فروديوارهاى، واحـدها نسبت به موقعيت اصلى و ناحيهاى خود فرونشينى دارند و معكوس شد گى شيب نيز در آنها ديده مى شود
لغزش گسل بهطور مرتب بهسمت نو كـ گسل كاهش مى يابد	با توجه به تاريخحچه گسترش گسل، نيمرخ جابهج جايى الگويى يمچحيده دارد و و لغزش گسل ممكن است در برخى واحدها ثابت باشد و بهسمت نو كـ گسل افزا ايش يا كاهش يابد
-	بهد دليل تغير مقاومت واحدها در اين چين ها، انواع گسل هاى مرتبط با با چين خور ر گى ممكن است بهو جود آيند

شكل ا - كمربند چحن خورده - رانده زاگرس (اقتباس از Sepehr, 2001). موقعيت گستره مورد مطالعه در ناحيه لرستان با مستطيل كو چكك نمايش داده شده است.

شكل r - نقشه زمين شناسى منطقه تاقد يس سلطان. مسير برش هاى عرضى ساختارى بر روى نقشه نشان داده شده است. براى مشاهله برش ها به شكل سا مر اجعه شود.

شُكل \& ساختارى CC و طرح شماتيك آن. وضعيت بيضى هاى كرنش بهد ست آمت آمده براى قسمتهاى مختلف، نسبت به سطح بالايى لايه در طرح شماتيك نشان داده شده است.

شكل V- الف) تصوير يكى از مقاطع ناز كك ميكروسكوپى كه از آنها در محاسبه كرنش نهايى استفاده شده است.(تصوير در نور قطبيده). ب) نمونهاى از نمودارهاى بهنجار شده Fry تهيه شده توسط نرمافزار (Erslev, 1988) Instrain ج) نمودار فلين بر اساس دادههاى چیين كلكـبيشه. نقاط آبى مربوط به لايههاى فر اديواره و نقاط سرخ مربوط به لايه هاى فروديوارين است است

شکل و سطح محورى در اين نمودارها نشان داده شدهاند.

شكل ه- وضعيت تاقديسهاى سلطان و كلكك بيشه بر روى نمودارهاى (1987) (Jamison در مسير برش هاى مختلف.

شكل 9- روابط محاسبه ستبراى واقعى لايهها با در نظر گرفتن تأثير ات تويو گرافى(Rowland \& Duebendorfer, 1994) .
اختلاف ارتفاع تويو گرافى در ابتدا و انتهاى لايه، t ستبراى واقعى لايه،

$$
\text { h عرض لايه در نتشه، } \delta \text { شيب لايدبندى). }
$$

شكل q- الف) مدل ساختارى High-Angle Breakthrough انواع ممكن ساختارهاى در حال بيشرفت يا نفوذ. اين مدل با فرض لغزش موازى لايهاى و سطوح محورى از قبل مو جود قفل شده در مواد، كشيده شده است (اقتباس از (1990) Suppe \& Medwedeff) . با تكامل چين هاى انتشار گسلى Erslev \& Mayborn (1997) توسط سازو كار سهبرشى(اصلاح شدهاز مدل

نشان داده شده است (اقتباس از Mitra (2002)).

شكل ^- پيش بينى هاى جنبشى براى مدل هاى مختلف چین خو رد گى مر تبط
 (or Interlayer Flow (ا نشان مىدهند. پيكانهاى كم ستبرا، لغزش درون لايهاى يا خمشى (Flexural or Interlayer Slip) با طول هاى برابر با بزر گیى لغزش را نشان میدهند (اقتباس از (1997) Thorbjornsen \& Dunne).

شكل (1- تفسير اطلاعات سطحى و زير سطحى مشابه با استفاده از سه مدل مختلف چین ـ گسل. a هین انتشار گسلى نوع Self-similar،

شكل ّا - نمايى از هفت برش ساختارى رسم شده بر روى تاقديس سلطان. برش هاى ساختارى 'AA تا 'GG به ترتيب از خاور به باختر است.

شكل rir نمايى از هسته تاقديس سلطان در مسير 'GG. ديد بهسمت خاور،
 Tz تلهزنگ؟، Kn كشكان، As Tسمارى).

شكل هسته تاقديس، ج) توسعه چين همراه با مهاجرت مواد از ناوديس بهسمت تاقديس و خرخش پهلوها. در اين مرحله گسلش راندگگ براى متعادل كردن (Accommodate) كوتاهشد گى، در سطح جدايشبالايى (سازند گوريى) تكامل مى يابد،،،، هو) تأثير سطوح جدايش ميانىدر تكامل چجين، تامر حله تشكيل ناوديس خوابيدهدر بيشانى تاقديس سلطان.

شكل 19 ا مدل هاى سه بعدى تهيه شده توسط نرم|فزار RMS براى سطح بالايى گروه دهرم تاقديس (Reservoir Modeling System) سلطان به همراه خطوط هم تراز زيرزمينى. الف) ديد بهسمت جنوبخاور. ب) ديد بهسمت شمالباختر،(عمق ها زير سطح دريا است).

شكل اه - نقشه هم تراز زيرزمينى (UGC Map) كه با استفاده از برش هاى ساختارى هفت گانه (شكل זا) براى گروه دهرم تاقد يس سلطان رسم شده است. محدوده خاكسترى رنگک بستگى افقى و اختلاف زرفاى خطوط هـمتراز بستگى قائم را نشان مى دهند.

 مد يريت اكتشاف.
References

Dahlstrom, C.D.A., 1970- Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, V. 18, 332-406.
Dittmar, D., 1994- Strain partitioning across a fold and thrust belt: the Rhenish Massif, Mid-European Variscides. J. Struct. Geol. 16 (10), 1335-1352.
Dunnet, D., 1969- A technique of finite strain analysis using elliptical particles. Tectonophysics 7,117-136.
Erslev, E.A. \& Mayborn, K.R., 1997- Multiple geometries and modes of fault-propagation folding in the Canadian thrust belt. Journal of Structural Geology, V. 19, 321-335.
Erslev, E.A., 1988- Normalized center-to-center strain analysis of packed aggregates. Journal of Structural Geology, 10(2), $201-209$.
Harrison, J.C. \& Bally, A.W., 1988- Cross sections of the Devonian to Mississippian fold belt on Melville Island, Canadian Arctic Islands, Canadian Society of Petroleum Geologists, 36, 311-332.
Hessami, K., koyi, H.A. \&Talbot, C.J., 2001- The Significance of Strike-Slip Faulting in the Basement of the Zagros Fold and thrust Belt. Journal of Petroleum Geology, 24(1), 5-28.
Jamison, W.R., 1987- Geometric analysis of fold devolopment in overthrust terranes. Journal of Structural Geology, V. 9, $207-219$.
McClay, K.R., 2003- Structural geology for petroleum exploration, lecture notes., 503p.
McNaught, M.A. \& Mitra G., 1993- A kinematic model for the origin of footwall synclines. Journal of Structural Geology, Vol. 15, 805-808.
McQuarrie, N., 2004- Crustal scale geometry of the Zagros fold-thrust belt, Iran. Journal of Structural Geology., Vol. 26 (3), 519-535.
Mitra, S., 1990- Fault Propagation folds: Geometry kinematic evolution and hydrocarbon traps. AAPG Bulletin, V. 74, 921945. Mitra, S., 2002- Fold-Accomodation Faults. AAPG Bull., 86(4), 671-693.
Mitra, S., 2002- Structural models of faulted detachment folds. AAPG Bull., 86(9), 1673-1694.
Ramsay, J.G., 1967- Folding and Fracturing of Rocks. McGrow-Hill, New York.
Rowland, S.M. \& Duebendorfer, E.M., 1994- Structural analysis and synthesis 2ndEdition. Blackwell Scientific PubUcation.
Sattarzadeh, Y., Cosgrove, J.W., Vita-Finzi, C., 2000- The interplay of faulting and folding during the evolution of the Zagros deformation belt. In: Cosgrove, J.W., Ameen, M.S. (Eds.), Forced Folds and Fractures Special Publication no. 169. Geological Society, London, 187-196.
Sepehr, M., 2001- The Tectonic Significance of the Kazerun Fault Zone, Zagros Fold-Thrust Belt, Iran. Thesis Submitted for the Degree for Ph.D, University of London, 215 p .
Sherkati, S. \& Letouzey, J., 2004- Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and Petroleum Geology, Vol. 21, No. 5, 535-554.
Stocklin, J., 1968- Structural histoty and tectonics of Iran: a review. AAPG Bulletin, 52, 1229-1258.
Suppe, J. \& Medwedeff, D.A., 1990- Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, V. 83, 409-454.

Thorbjornsen, K. L. \& Dunne, W. M.,1997- Origin of Thrust-Related Fold: Geometric vs Kinematictests. Journal of Structural Geology, 19, 303-319.
Wallace, W.K. \& Homza, T.X., 1997- Differences between fault-propagation folds and detachment folds and their subsurface implications. American Association of Petroleum Geologists Bulletin, 6, 122.

