Document Type : Original Research Paper

Authors

1 Ph.D. Student, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

2 Professor, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

Abstract

Mineralogy of oxide zone as clue about past climate reveals occurrence of supergene enrichment processes in Mahour Zn-Cu-(Pb-Bi-Ag) mineralization, in central Lut, during two stages: In first stage that supergene processes have occurred from meteoric waters in an arid climate during Oligocene to Upper Miocene, leached capping contains jarosite, natrojarosite and goetite in various ratios and less hematite and sulfur has formed with supergene argillic alteration with quartz, alunite, kaolinite, montmorilonite, and gypsum. In response to neutrialization of solutions, an abundance of smithsonite and malachite with neotocite, greenokite /hawleite and minor azurite and silicate, phosphate and arsenate minerals precipitated in oxide zone and immature sulfide enrichment generated. In second stage, atachamite, paratacamite and chrysocolla have been formed through the interaction of saline waters and preexisting copper oxides after the onset of hyperaridity at Pliocene, and have been preserved since that time. Mineralogy features of leached capping provide insighs into hypogene ore mineral and alteration types and indicate sufficient acid has not been produced for effective leaching of Cu and hence, do not suggest extensive chalcocite enrichment under water table. An interpretation that mineralogy of oxide zone is also illustrative of it and results from exploration drill holes confirm it. With respect to style of Mahour polymetal mineralization and similar mineralizations in district, detail investigation of oxide zone and mapping leached caps in deposit and district scale can be used as suitable exploration tool in the search for conceal ore deposits..

Keywords

Main Subjects

 
Alpers, C. N. and Brimhall, G. H., 1988- Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geological Society of America Bulletin, 100: 1640- 1656. https://doi.org/10.1130/0016-7606(1988)1002.3.co;2
Anderson, J. A., 1982- Characteristics of leached capping and techniques of appraisal. In: Titely, S. R., eds., Advances in geology of the porphyry copper deposits, southwestern North America. Tuscon, University of Arizona Press: 275- 295.
Arribas, A. Jr., Cunningham, O., Rytuba, J., Rye, O., Kelly, W., Podwysocki, W., McKee, E. and Tosdal, R., 1995- Geology, geochronology, fluid inclusions, and isotope geochemistry of Rodalquilar Au alunite deposit, Spain. Economic Geology, 90: 795- 822. https://doi.org/10.2113/gsecongeo.90.4.795
Barnes, H. L., 1997- Geochemistry of hydrothermal ore deposits, third edition, New York, John Wiley and Sons, 797p.
Bloom, H., 1966- Geochemical exploration as applied to copper molybdenum deposits, in Titely, S.R., Hicks, C.L., eds. Geology of the porphyry copper deposits, Southwestern North America: Tuscon, University of Arizona Press, 111- 119.
Brugger, J., McPhail, D. C., Wallace, M. and Waters, J., 2003- Formation of willemite in hydrothermal environments. Economic Geology, 98: 819- 835. https://doi.org/10.2113/gsecongeo.98.4.819
Cameron, E. M., Leybourne, M. I. and Palacios, C., 2007- Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42: 205- 218. https://doi.org/10.1007/s00126-006-0108-0
Chávez, W. X., 2000- Supergene oxidation of copper deposits: Zoning and distribution of copper oxide minerals. Society of Economic Geologists Newsletter, 41: 10- 21. https://pdfs.semanticscholar.org/8aa0/81d4e9f27d4ceef30e75c66e1158e7ec0e1a. pdf
Foster, G. L., Royer, D. L. and Lunt, D. J., 2017- Future climate forcing potentially without precedent in the last 420 million years, Nat Commun., 8: 14845. http://doi.org/ 10.1038/ncomms14845.
Guilbert, J. M. and Park, Jr. C. F., 1986- The geology of ore deposits, W. H. Freeman and Company, New York, 985p.
Hannington, M., 1993- The formation of atacamite during weathering of sulfides on the modern seafloor. Canadian Mineralogist, 31:945- 956. https://pubs.geoscienceworld.org/canmin/issue/31/4
Hemley, J. J., Hostetler, P. B., Gude, A. J. and Mountjoy, W. T., 1969- Some stability relations of alunite. Economic Geology, 64: 599- 612. https://doi.org/10.2113/gsecongeo.64.6.599
Jarrell, O. W., 1944- Oxidation at Chuquicamata, Chile: Economic Geology, 39: 251- 286.
Lapakko, K., 2002- Metal Mine Rock and Waste Characterization Tools: An Overview. IIED, WBCSD, Great Britan, 30 pp. https://pubs.iied.org/pdfs/G00559.pdf
Leverett, P., McKinnon, A. R. and Williams, P. A., 2005- Supergene geochemistry of the Endeavor ore body, Cobar, NSW, and relationships to other deposits in the Cobar basin. In: regolith 2005: ten years of CRC LEME (Ed. Roach, I. C.), 191- 194. Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), Canberra.
Leybourne, M. I. and Cameron, E. M., 2008- Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry Cu deposits, Atacama Desert, Chile. Chem Geol, 247: 208- 228. https://doi.org/10.1016/j.chemgeo.2007.10.017.
Miri Beydokhti, R., Karimpour, M. H., Mazaheri, S. A., Santos, J. F. and Klotzli, U., 2015- U-Pb zircon geochronology, Sr – Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 111: 192- 205.
Nordstrom, D. K. and Alpers, C. N., 1999- Geochemistry of mine waters: Reviews in Economic Geology, 6A: 133- 160.
Palmer, A. N. and Palmer, M. V., 2000- Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico and West Texas. Journal of Cave and Karst Studies, 62: 91- 108. https://caves.org/pub/journal/PDF/V62/v62n2-Palmer.pdf
Parker, R. L. 1962- Isomorphous substitution in natural and synthetic alunite. American Mineralogist, 47: 127- 136. http://www.minsocam.org/ammin/AM47/AM47_127.pdf
Reich, M. and Vasconcelos, P. M., 2015- Geological and Economic Significance of Supergene Metal Deposits. Elements, 11: 305- 310. https://doi.org/10.2113/gselements.11.5.305.
Reich, M., Palacios, C., Parada, M. A., Fehn, U., Cameron, E. M., Leybourne, M. I. and Zúñiga, A., 2008- Atacamite formationby deep saline waters in copper deposits from the atacama desert, chile: evidence from fluid inclusions, groundwater geochemistry, TEM, and 36Cl data. Mineralium Deposita, 43: 663- 675. https://doi.org/10.1007/s00126-008-0184-4
Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E. M., Leybourne, M. I., Parada, M. A., Zúñiga, A. and You, C. F., 2009- Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineralium Deposita, 44: 497- 504. https://doi.org/10.1007/s00126-00-022-3
Reichert, J. and Borg, G., 2008- Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geology Reviews, 33: 134- 151. https://doi.org/10.1016/j.oregeorev.2007.02.006
Ritchie, A. I. M., 1994- The Waste-rock Environment, in: Environmental Geochemistry of Sulfide Mine-Wastes, Mineralogical Association of
Canada Short Course Handbook )J.L. Jambor and D.W. Blowes, eds.(, v. 22, p. 133-161.
Rojas, N., Drobe, J., Lane, R. and Bonafede, D., 1999- El pórfido cuprífero de Taca Taca Bajo, Salta, in Zappettini, E.O., ed., Recursos minerales de la República Argentina: Buenos Aires, Instituto de Geologíay Recursos Minerales SEGEMAR Anales, 35: 1321- 1331.
Rose, A. W., Hawkes, H. E. and Web, J. S., 1979- Geochemistry in mineral exploration. Academic Press, 657 p. https://doi.org/10.1017/S0016756800029046.
Rose, R., 1989- Mobility of copper and other heavy metals in sedimentary environments. In: SedimentHosted stratiform copper deposits (Eds. Boyle, R. W., Brown, A. C., Jefferson, C. W., Jowett, E. C. and Kirkham, R. V.) Geological Association of Canada, Special paper, 36: 97- 110.
Saaltink, M. W., Domènech, C., Ayora, C. and Carrera, J., 2002- Modelling the oxidation of sulphides in an unsaturated soil. In: Younger, P., Robins, N.S. (Eds.), Mine Water Hydrogeology and Geochemistry. Geological Society, London, Special Publication, 198: 187- 204.
Sangameshwar, S. R. and Barnes, H. L., 1983- Supergene processes in zinc–lead–silver sulfides ores in carbonates. Economic Geology, 78: 1379- 1397. https://doi.org/10.2113/gsecongeo.78.7.1379.
Scott, K. M., 1990- Origin of alunite- and jarosite-group minerals in the Mt. Leyshon epithermal gold deposif northeast Queensland, Australia. American Mineralogist, 75: 1176- 1181.
Scott, K. M., Ashley, P. M. and Lawie, D. C., 2001- The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn-Pb-Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. Journal of Geochemical Exploration, 72: 169- 191. https://doi.org/10.1016/S0375-6742(01)00159-5
Seal, R. R., Foley, N. K., Wanty, R. B., 2002- Introduction to geoenvironmental models of mineral deposits. In: Seal II, R.R., Foley, N.K. (Eds.), Progress on Geoenvironmental Models for Selected Mineral Deposit Types. USGS Open File Report 02-195: 1- 7.
Sillitoe, R. H. and Clark, A. H., 1969- Copper- and copper-iron sulfides as the initial products of supergene oxidation, Copiapó mining district, northern Chile. American Mineralogist, 54:1684- 1710.
Sillitoe, R. H., 2005- Supergene oxidized and enriched porphyry copper and related deposits. Economic Geology 100th Anniversary: 723- 768.
Woods, T. L. and Garrels, R. M., 1986- Phase relations in some cupric hydroxy minerals. Economic Geologist, 81: 1989- 2007. https://doi.org/10.2113/gsecongeo.81.8.1989.