Document Type : Original Research Paper

Authors

1 M.Sc., Department of Petrology, Geochemistry and Economic Geology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

2 Assistant Professor, Department of Petrology, Geochemistry and Economic Geology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

3 Professor, Department of Petrology, Geochemistry and Economic Geology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

Abstract

The Qarah Chay Neogene caldera is located at 30 km SE Quchan in the Binalud Zone. The volcanic rocks of the caldera are mainly dacite in composition and composed of plagioclase and amphibole. The rocks present a variety of porphyry, microlitic porphyry, sieve, trachytic and glomeroporphyritic textures. Based on the spider diagrams normalized to chondrite and primitive mantle, the study rocks show enrichments in Large Ion Lithophile Elements (LILEs) and depletion in Heavy Rare Earth Elements (HREEs) and High Field Strength Elements (HFSEs). Their’s calc-alkaline affinity and the obvious negative HFSE anomalies (such as Ti, Nb and P), and positive Pb anomaly are similar to those magmas related to active continental margin. Moreover, their high concentrations of Sr, Sr/Y, Na2O/K2O, and low concentrations of K and MgO are the same as high silica adakites. Considering the above points, the parental magma(s) of the Qarah Chay Caldera formed from the partial melting of eclogite during the subduction of oceanic lithosphere of Sabzevar under the southern edge of the eastern Alborz zone in Neogene. It seems that the major Quchan and Dareh Gaz strike slip faults played a main role for the caldera formation.

Keywords

Main Subjects

References
Baumann, A., Spies, O. and Lensch, G., 1983- Strontium Isotopic Composition of Post-Ophiolitic Tertiary Volcanics between Kashmar, Sabzevar and Quchan/NE Iran. Neues Jahrbuch für Geologie und Paläontologie, 168, 409- 416. https://www.schweizerbart.de/papers/njgpa/detail/168/89375/Strontium_Isotopic_Composition_of_Post_Ophiolitic_Tertiary_Volcanics_between Kashmar_Sabzevar_and_Quchan_NE_Iran
Baker, D. R., 1998- Granitic melt viscosity and dike formation. Journal of Structural Geology, 20, 1395- 1404. https://www.sciencedirect.com/science/article/pii/S0191814198000571
Best, G., 2003- Igneous and metamorphic petrology. Blackwell Science, 729 pp. http://www.fc.up.pt/DocsOnLine/Temp/43742/PROGRAMA.PDF
Boynton, W. V., 1984- Cosmochemistry of the rare earth elements: Meteorite studies, in Henderson, P., ed., Rare earth element geochemistry: Henderson, P. (Ed), Rare Earth Element Geochemistry, Elsevier, 63- 114. https://www.sciencedirect.com/science/article/pii/B9780444421487500083
Castillo, P. R., 2006- An overview of adakite petrogenesis Chin. Sci. Bull, 51, 257- 268. https://link.springer.com/article/10.1007/s11434-006-0257-7
Castillo, P. R., 2012- Adakite petrogenesis Lithos, 134, 304- 316. https://www.sciencedirect.com/science/article/pii/S002449371100274X
Deer, W. A., Howie, R. A. and Sussman, J. Z., 1986- An Introduction to the Rock Forming Minerals. Longman Ltd, 528pp. https://pubs.geoscienceworld.org/books/book/952/an-introduction-to-the-rock-forming-minerals
Defant, M. J. and Drummond, M. S., 1990- Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662- 665. https://www.nature.com/articles/347662a0
Deng, J., Yang, X., Qi. H., Zhang, Z. F., Mastoi, A. S. and Sun, W., 2017- Early Cretaceous high-Mg adakites associated with Cu-Au mineralization in the Cebu Island, Central Philippines: Implication for partial melting of the paleo-Pacific Plate. Ore Geology Reviews, 88, 251- 269. https://www.sciencedirect.com/science/article/pii/S0169136816308435
Foley, F., Norman, J., Pearson, N. J., Rushmer, T., Turner, S. and Adam, J., 2013- Magmatic Evolution and Magma Mixing of Quaternary Adakites at Solander and Little Solander Islands, New Zealand. Journal of Petrology, 54, 1- 42. https://academic.oup.com/petrology/article/54/4/703/1547259
Gaetani, G. A., 2004- the influence of melt structure on trace element partitioning near the peridotite solidus. Contributions to Mineralogy and Petrology, 147, 511- 527. https://link.springer.com/article/10.1007/s00410-004-0575-1
Ghasemi, H. and Rezaei-Kahkhaei, M., 2015- Petrochemistry and Tectonic Setting of the Davarzan-Abbasabad Eocene Volcanic (DAEV) rocks, NE Iran. Mineralogy and Petrology, 109, 235- 252. https://link.springer.com/article/10.1007/s00710-014-0353-3
Hawkesworth, C. J., Gallagher, K. and Hergt, J. M., 1993- Mantle and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences, 21, 175- 204. https://risweb.st-andrews.ac.uk/portal/en/researchoutput/mantle-and-slab-contributions-in-arc-magmas(8441d6d8-416f-47f1-b3bd-e796879a5a75).html
Jamshidi, K., Ghasemi, H., Troll, V. R., Sadeghian, M. and Dahren, B., 2015- Magma storage and plumbing of adakite-type post-ophiolite intrusions in the Sabzevar ophiolitic zone, NE Iran. Journal of Solid Earth, 6, 49-72. doi:10.5194/se-6-49-2015. https://www.solid-earth.net/6/49/2015/
Jamshidi, Kh., Ghasemi, H., Laicheng, M. and Sadeghian, M., 2018- Adakite magmatism within the Sabzevar ophiolite zone, NE Iran: U-Pb geochronology and Sr-Nd isotopic evidences. Geopersia, 8 , 111- 130. https://geopersia.ut.ac.ir/article_64220.html
Kazemi, Z., Ghasemi, H., Tilhac, R., Griffin, W., Moghadam, H. S., O'Reilly, S. and Mousivand, F., 2019- Late Cretaceous subduction-related magmatism on the southern edge of Sabzevar basin, NE Iran. Journal of the Geological Society, doi.org/10.1144/jgs2018-076. https://jgs.lyellcollection.org/content/early/2019/01/08/jgs2018-076
Kirkpatrichk, R. G., 1977- Nucleation and growth of plagioclase, Makaopuhe and Alane lava lakes Kilauea volcano, Hawaii. Geological Society of America Bulletin, 88, 78- 84. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/88/1/78/202102
Kumar, S. and Singh, R. N., 2014- Modelling of Magmatic and Allied Processes. Springer, 240pp. https://link.springer.com/book/10.1007%2F978-3-319-06471-0
Martin, H., 1999- Adakitic magmas: modern analogues of Archean granitoids. Lithos, 3, 411- 429. https://www.sciencedirect.com/science/article/pii/S0024493798000760
Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. and Champion, D., 2005- An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1- 24. https://www.sciencedirect.com/science/article/pii/S002449370400266X
Middlemost, E. A., 1994- Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37, 215- 224. https://www.sciencedirect.com/science/article/pii/0012825294900299
Omrani, H., 2018- Island-arc and Active Continental Margin Adakites from the Sabzevar Zone, Iran.  Petrology, 26, 96- 113. https://link.springer.com/article/10.1134/S0869591118010058
Pearce, J. A., Harris, N. B. W. and Tindle, A. J., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rock. Journal of Petrology, 25, 956- 983. https://academic.oup.com/petrology/article-abstract/25/4/956/1386972
Peccerillo, A. and Taylor, S. R., 1976- Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58, 63- 81. https://link.springer.com/article/10.1007/BF00384745
Rapp, R. P., Shimizu, N., Norman, M. D. and Applegate, G. S., 2006- Reaction between slabs derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPA. Chemical Geology, 160, 335- 356. https://ci.nii.ac.jp/naid/10017398985/
Rollinson, H., 1993- Using Geochemical Data: Evaluation, Presentation, Interpretation. Published by Routledge. New York, USA, 352pp. https://www.taylorfrancis.com/books/9781420004755
Schandi, E. S. and Gorton, M. P., 2002- Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97, 629- 642. https://pubs.geoscienceworld.org/segweb/economicgeology/article-abstract/97/3/629/22213
Shabanian, E., Acocella, V., Gioncada, A., Ghasemi, H., Bellier, O., 2012- Structural control on volcanism in intraplate post collisional settings: Late Cenozoic to Quaternary examples of Iran and Eastern Turkey. Tectonics. 31: Tc3013, doi:10.1029/2011TC003042. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011TC003042
Shand, S. J., 1943- Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. John Wiley & sons, inc., Nature, 444 pp. https://www.amazon.com/Eruptive-rocks-composition-classification-meteorites/dp/B0006AQ8BE
Spies, O., Lensch, G. and Mihem, A., 1983- Petrology and Geochemistry of the Post-Ophiolitic Tertiary Volcanics between Sabzevar and Quchan/ NE Iran. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band, 168, 389- 408. https://www.schweizerbart.de/papers/njgpa/detail/168/89382/Petrology_and Geochemistry_of_the_Post_Ophiolitic_Tertiary_Volcanics_between_Sabzevar_and_Quchan_NE_Iran
Stewart, M. L. and Pearce, T. H., 2004- Sive-textured plagioclase in dacitc magma: Interference imaging results. American Mineralogist, 89, 348- 351. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/89/2-3/348/44150
Sun, S. S. and McDonough, W. S., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313- 345. https://ci.nii.ac.jp/naid/10004643736/
Wang, Q., Wyman, D. A., Xu, J. F., Zhao, Z. H., Jian, P., Xiong, X. L., Baoa, Z. W., Lid, C. F. and Bai, Z. H., 2006- Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization. Lithos, 89, 424- 446. https://www.sciencedirect.com/science/article/pii/S0024493706000302
Wang, X. L., Shu, X. J., Xu, X., Tang, M. and Gaschnig, R., 2012- Petrogenesis of the Early Cretaceous adakite-like porphyries and associated basaltic andesites in the eastern Jiangnan orogen, southern China. Journal of Asian Earth Sciences, 61, 243- 256. https://www.sciencedirect.com/science/article/pii/S1367912012004361
Whitney, D. L. and Evans, B. W., 2010- Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185- 187. http://minsoc.ru/FilesBase/Whitney_p185_10.pdf
Winchester, J. A. and Floyd, P. A., 1977- Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical geology, 20, 325- 343. https://www.sciencedirect.com/science/article/abs/pii/0009254177900572
Wood, D. A., Joron, J. L., Treuil, M., Norry, M. and Tarney, J., 1979- Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology, 70, 319- 339. https://link.springer.com/article/10.1007/BF00375360.