Document Type : Original Research Paper

Authors

1 Ph.D. Student, Department of Geology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

2 Associate Professor, Department of Geology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

3 Proffesor, Department of Geology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

Abstract

The Ghareh naz migmatites were formed as a result of partial melting of amphibolites under granulite facies conditions. Structeral, textural, mineralogical and geochemical evidence in the migmatites migmatites indicates their formation via partial melting during partial melting. The studied migmatites have a variety of structures including patchy, scholen, ophthalmitic, stromatic, diktyonitic, ptygmatic, phlebetic, schliren, pegmatitoid and nebulitic. The presence of striated plagioclases and amorphous quartzes along with granular texture, myrmecite and peritite in the locosome parts as well as the presence of zoning, polysynthetic twin in the plagioclases indicate a partial melting role in the formation of migmatites. Based on mass balance calculations in the ghareh naz migmatites, the parts of the migmatite components of the locosome, melanosome, and mesosome are aligned in a straight line, indicating a partial melting source of the studied migmatites.The percentage of partial melting for the studied megmatites was calculated to be about 36.5% and 43.6%,respectively. The difference in partial melting percentages may depend on the relationship between the rate and melt outflow and to a small extent on the amount of melt in the region. The formation temperature of these migmatites is determinated about 850-850 ° C and the pressure is about 6-7 kbar.

Keywords

Main Subjects

References
Ashworth, J. R. (Ed)., 1985- Migmatites. Blackie, Glasgow, 302p.
Ashworth, J. R. and Mclellan, E. L., 1985- Texture in migmatites, Blackie and Son, Glasgow, 180-203.
Barr, D., 1985- migmatites in the Miones. In: Ashworth, J. R., (ed), Migmatites Blackie and Son ltd.,Glosgow, 225-264.

Barraud, J., Gardien, V., Allemand, P. and Grandjean, P., 2004- Analogue models of melt-flow networks in folding migmatites. Journal of Structural Geology26(2): 307-324. https://doi.org/10.1016/j.jsg.2003.06.002.

Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210-265. https://doi.org/10.1139/e81-019.
Bons, P. D., Arnold, J., Elbrg, M. A., Kalda, J., Soesoo, A. and Van Milligen, B. P., 2004- melt extraction and accumulation from partially molten rocks, Lithos. 78: 25-42. https://doi.org/10.1016/j.lithos.2004.04.041.
Brown, G. C. and Fyfe, W. S., 1970- The production of granitic melts during ultrametamorphism, Contributions to Mineralogy and Petrology, 28(4): 310-318. https://doi.org/10.1007/BF00388953.

Brown, M., 1994- The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally derived granite connection in thickened orogens, Earth-Science Review, 36(1-2): 83-130. https://doi.org/10.1016/0012-8252(94)90009-4.

Chappell, B. W. and White, A. J. R., 1974- Two contrasting granite types. Pacific Geology, 8: 173–174. https://ci.nii.ac.jp/naid/10018467068/.
Droop, G. T. R. and Moazzen, M., 2007- Contact metamorphism and partial melting of Dalradian pelites and semipelites in the southern sector of the Etive aureole.,Scottish Journal of Geol. 43(2): 155-179. https://doi.org/10.1144/sjg43020155.
Greenfield, J. E., Clarke, G. L. and White, R. W., 1998- A sequence of partial melting reactions at Mt Stafford, central Australia. Journal of Metamorphic Geology. 16(3): 363–378. https://doi.org/10.1111/j.1525-1314.1998.00141.x.
Harley, S. L., 1998- On the occurrence and characterization of the ultrahigh-temperature crustal metamorphism. In: Treloar, P. J. and O’Brien, P. J. (eds.), What drives metamorphism and metamorphic reactions? Geological Society of London, Special. Publication, 138: 81-107. https://doi.org/10.1144/GSL.SP.1996.138.01.06.

Helz, R. T., 1973- Phase Relations of Basalts in their Melting Range at PH2O = 5 kb as a Function of Oxygen Fugacity1: Part I. Mafic Phases, Journal of Petrology, 14(2): 139-193. https://doi.org/10.1093/petrology/14.2.249.

Holland, T. J. B. and Powell, R., 1985- An internally consistent thermodynamic data set with uncertainties and correlations: 2 Data and results. Journal of Metamorphic Geology, 3(4): 343-370. https://doi.org/10.1111/j.1525-1314.1985.tb00324.x
Huang, W. L. and Wyllie, P. J., 1974- Melting relations of muscovite with quartz and sanidine in the K2O-Al2O3-SiO2-H2O system to 30 Kb and an outline of paragonite melting relations.Am.J.Sci.274(4): 378-395. http://resolver.caltech.edu/CaltechAUTHORS:20160127-135553125.
Irvine, T. N. and Baragar, W. R. A., 1971- A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth classification of the common volcanic rock. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055.
Johannes, W., 1983- On the origin of layerd migmatitesIn:M.P Atherton and C.D Gribble (eds),Migmatites,melting and metamorphism. Shiva, Nantwich, 234-248.
Johannes, W., 1988- What controls partial melting in migmatites? Journal of Metamorphic Geology, 6(4): 451-465.  https://doi.org/10.1111/j.1525-1314.1988.tb00433.x.
Johanson, T. E., Hudson,  N. F. C. and Droop, G. T. R., 2001- Melt segregation structure within the Inzie Head gneisses of the northeastern Dalradian, Scottish J. Geology 37( 2): 59-72. https://doi.org/10.1144/sjg37020059.
Kerrick, D. M., 1991- Overview of contact metamorphism. In: Contact Metamorphism, Kerrick, D.M. (ed.). Reviews in Mineralogy, 26, Mineralogical Society of America.
MacRae, N. D. and Nesbitt, H. W., 1980- Partial melting of common metasedimentary rocks: A mass balance approach, Contributions to Mineralogy and Petrology, 75(1): 21-26. https://doi.org/10.1007/BF00371886.
Maniar, P. D. and Piccoli, P. M., 1989- Tectonic discrimination of granitoids. Geological Society of America Bulletin101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1012.3.CO;2 .
Marchildon, N. and Brown, M., 2003- Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: implications for melt transfer at grain-to orogen-scale. Tectonophysics. 364(3): 215-235.  https://doi.org/10.1016/S0040-1951(03)00061-1.
McDade, P. and Harley, S. L., 2001- A petrogenetic grid for aluminousgranulite facies metapelites in KFMASH system. J. Metamorph.Geol. 19(1): 45–59. https://doi.org/10.1046/j.0263-4929.2000.00296.x.
McLellan, E. L., 1988- Migmatite structures in the Central Gneiss complex, Boca de Quadra, Alaska, Journal of Metamorph. Geology, 6(4): 517-552. https://doi.org/10.1111/j.1525-1314.1988.tb00437.x.
McLellan, E. L., 1989- Sequential formation of subsolidus and anatectic migmatites in response to thermal evolution, eastern Scotland. Journal of Geology, 97(2): 165-182. https://doi.org/10.1086/629292.
Mehnert, K. B. and Busch, W., 1982- The initial stage of migmatite formation. Neues Jarbuch, Mineralogie Abh., 145, 211-238.
Mehnert, K. R., 1968- Migmatites and the origin of granitic rocks, Elsevier, Amsterdam, 400 p.
Milard, I., Sawyer, E. W. Brown, M., 2001- Formation of diatexite migmatites and granite magma during anatexis of semi-pelitic metasedimentary rocks: An example from St. Malo, France. Journal of Petrology, 42(3): 487-505. https://doi.org/10.1093/petrology/42.3.487.
Moazzen, M. and Hajialioghli, R., 2008-  Zircon SHRIMP dating of mafic migmatites from NW Iran, Reporting the oldest rocks from the Iranian crust. 5th Annual Meeting AOGS, Busan, Korea SE62.
Nyman, N. W., Pattison, D. R. M. and Ghen, E. D., 1995- Melt extraction during formation of K-feldspar +  sillimanite migmatites, west of Revelstoke, British Columbia. j. Petrol 36(2): 351-327. https://doi.org/10.1093/petrology/36.2.351.
Nyström, A. I., Kriegsman, L. M. and Ehlers, C., 2003- The granite-migmatite connection in SW Finland. Conference Proceeding, EGS - AGU - EUG Joint Assembly. https://ui.adsabs.harvard.edu/abs/2003EAEJA....13337N.
Olsen, S. N., 1977- Origin of the Baltimore Gneiss migmatites at Piney creek, Maryland. Bulletin of the Geological Society of America 88(8): 1089-1101. https://doi.org/10.1130/0016-7606(1977)882.0.CO;2
Olsen, S. N., 1983- A quantitative approach to local mass balance in migmatites. In: migmatites, melting and metamorphism, Atherton, M. P. and Gribble, C. D. (eds.) Shiva Pub. Nantwich, 201-233.
Olsen, S. N., Marsh, B. D. and Baumgartner, L. P., 2004- Modelling mid­crustal migmatite terrains as feeder zones for granite plutons: the competing dynamics of melt transfer by bulk versus porous flow, Transactions of the Royal Society of Edinburgh, Earth Sciences, 95, 49-58. https://doi.org/10.1017/S0263593300000912.
Pattison, D. R. M. and Harte, B., 1988- Evolution of structurally contrasting anatectic migmatites in the 3- kbar Ballachulish aureole", Scotland. J. metamorph.Geol 6(4): 475-494. https://doi.org/10.1111/j.1525-1314.1988.tb00435.x.
Pattison, D. R. M., Chacko, T., Farquhar, J. and Mcfarlane, C. R. M., 2003- Temperature of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, 44(5): 867-900. https://doi.org/10.1093/petrology/44.5.867.
Powell, R. and Downes, J., 1990- Garnet porphyroblast-bearing leucosomes in metapelites: mechanisms, phase diagrams, and an example from Broken Hill, Australia. In: Ashworth, J. R. and Brown, M. (eds.), High - temperature metamorphism and crustal anatexis. The Mineralogical Society Series, vol 2. Springer, Dordrecht, 105-123. https://doi.org/10.1007/978-94-015-3929-6_5.
Sawyer, E. W., 1996- Melt segregation and magma flow in migmatites: implications for the generation of granite magmas, Trans. Royal Society Edinburgh, Earth Sciences. 87(1-2): 85-94. https://doi.org/10.1017/S0263593300006507.
Sawyer, E. W., 1998- Formation and Evolution of granite magma during crustal Reworking: The significance of Diatexity, Journal of Petrology. 39(6): 1143-1167. https://doi.org/10.1017/S0263593300006507.
Sawyer, E. W., 1999- Criteria for the recognition of partial melting, Physics and Chemistry of the Earth, part a-solid earth and geodesy, 24(3): 269-279. https://doi.org/10.1016/S1464-1895(99)00029-0.
Shafaii Moghadam, H., Li, X. H., J.Stern, R., Ghorbani, Gh. and Bakhshizad, F., 2016- Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan–Takab complex, NW Iran: Constraints on partial melting  of  metasediments, Lithos, 240-243: 34-48. https://doi.org/10.1016/j.lithos.2015.11.004.
Solar, G. A. and Brown, M., 2001- Petrogenesis of migmatitesin Maine, USA: possible source of peraluminous leu-cogranite in plutons. Journal of Petrology 42, 789–823.
Spear, F. S., Kohn, M. J. and Cheney, J. T., 1999- P-T paths from anatectic pelites. Contributions to Mineralogy and Petrology 134(1): 17-32. https://doi.org/10.1007/s004100050466.
Tanner, D. C. and Behrmann, J. H., 1997- Study of strain and partial melt transfer in a banded migmatite.J.Struct.Geol.19(11): 1405-1417. https://doi.org/10.1016/S0191-8141(97)00066-7.
Tanner, D. C., 1999- The scale-invariant nature of migmatite from the Oberpfalz, NE Bavaria and its significance for melt transport.Tectonophisics, 302(3-4): 297-305. https://doi.org/10.1016/S0040-1951(98)00286-8.
Thompson, A. B., 1990- Heat, Fluids, and Melting in the Granulite Facies. In: Vielzeuf D., Vidal P. (eds) Granulites and Crustal Evolution. NATO ASI Series (Series C: Mathematical and Physical Sciences), Springer, Dordrecht, vol 311: 37-58. https://doi.org/10.1007/978-94-009-2055-2_4.
Vanderhaeghe, O. and Teyssier, C., 2001- Partial melting and flow of orogens, Tectonophysics, 342, 451– 472, doi:10.1016/S0040‐1951(01)00175‐5.
Vernon, R. H. and Collins, W. J., 1988- Igneous microstructures in migmatites, Geology 16(12): 1126-1129. https://doi.org/10.1130/0091-7613(1988)0162.3.CO;2.
Vernon, R. H., Clarke G. L. and Collins W. J., 1990- Local, mid-crustal granulite facies metamorphism and melting: an example in the Mount Stafford area, central Australia. In: Ashworth J.R., Brown M. (eds) High-temperature Metamorphism and Crustal Anatexis. The Mineralogical Society Series, Springer, Dordrecht, vol 2: , 221-237. https://doi.org/10.1007/978-94-015-3929-6_11.
Vielzeuf, D. and Holloway, J. R., 1988- Experimental determination of the fluid-absent melting relations in the politic system. Contributions to Mineralogy and Petrology, 98(3), 257–76. https://doi.org/10.1007/BF00375178.
Waters, D. J. and Whales, C. J., 1984- Dehydration melting and the granulite transition in metapelites from southern Namaqualand, South Africa. Contributions to Mineralogy and Petrology, 88(3): 269-275. https://doi.org/10.1007/BF00380171.
Weinberg, R. F., 2005- Melt segregation structures in granitic plutons, Geology, 34(4): 305-308. https://doi.org/10.1130/G22406.1.
White, R. W., Pomroy, N. E. and Powell, R. 2005- An insitu metatexite-diatexite transition in upper amphibole facies rockds from Broken hill, Ausrtalia, Journal of Metamorphic Geology, 23(7): 579.https://doi.org/10.1111/j.1525-1314.2005.00597.x.
Whitney, D. L. and Evans, B. V., 2010- Abbreviations for names of rock-forming minerals. American Mineralogist., Vol. 95(1):185−187. https://doi.org/10.2138/am.2010.3371.

Whitney, D. L., Teyssier, C., Kfayon, A., Ahamilton, M. and Heizler, M., 2003- Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Niğde Massif, Turkey. Tectonophysics 376(1–2): 37-60. https://doi.org/10.1016/j.tecto.2003.08.009.

Winkler, H. G. F. and Breitbart, R., 1978- New aspects of granitic magmas.Neues Jb .Miner.Mh, 463-480. https://ci.nii.ac.jp/naid/10010348741/en/.
Winter, J., 2001- An Introduction to igneous and Metamorphic Petrology.Prentice Hall. The Canadian Mineralogist, 39(5): 1503-1505. https://doi.org/ 10.2113/gscanmin.39.5.1503.