Document Type : Original Research Paper


1 M.Sc., Department of Geology, Faculty of Science, University of Zanjan, Zanjan, Iran

2 Associate Professor, Department of Geology, Faculty of Science, University of Zanjan, Zanjan, Iran

3 Assistant Professor, Department of Geology, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran

4 Ph.d. Student, Academy of Sciences, University of Chinese, Beijing, China


Kamyaran ophiolitic complex located in the northeast Zagros orogeny along the crush zone between Arabian-Iranian plates. This complex outcropped between the Harsin ophiolites in southeast and Sarwabad ophiolite in northwest. Field observation reveal the fact that the Garmab Ophiolite in the northeast of Kamyaran is a tectonic mélange including peridotites and gabbros cut by microgabbroic dikes. Olivine, clinopyroxene and orthopyroxene with chromian spinel made the peridotites minerals with mesh and porphyroclastic fabrics and Gabbros include plagioclase, clinopyroxene and minor amphibole with intergranular, pegmatoidic and interstitial texture. According to the geochemical results, gabbros have tholeiitic to calk-alkaline nature and show the MORB to island arc characteristics. According to the geochemical and geotectonic results, Garmab peridotites plotted to the abyssal peridotites area that represent from the residual mantle spinel lherzolite after extraction of 15–20% partial melting. The break-off of Neo-Tethyan slab and subduction of this slab branch beneath the oceanic lithosphere during cretaceous led to cessation of the Neo-Tethyan subduction beneath the Sanandaj-Sirjan block, and forming arc-back arc basin (second step of subduction) and related rocks in the Kamyaran ophiolite. Presence of tholeiitic to calc-alkaline magmatism is in response to the slab retreat in the Eurasian continental margin.


Main Subjects

Agard, P., Omrani. J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B. and Wortel, R., 2011Zagros orogeny: a subduction-dominated process. Geol. Mag., 148: 692-725. doi: 10.1017/S001675681100046X.
Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005-Convergence history across Zagros (Iran): constraints from collisional and earlier deformation, International journal of earth sciences, 94:401-419. DOI: 10.1007/s00531-005-0481-4.
Ahmed, A. H., Arai, S., Abdel-Aziz, Y. M. and Rahimi, A., 2005-Spinel composition as a petrogenetic indicator of the mantle section in the NWeoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. Precambrian Research, 138: 225-234. doi:10.1016/j.precamres.2005.05.004.
Alipour, R., Zaré, M. and Ghassemi, M. R., 2012- Inception of activity and slip rate on the main recent fault of Zagros Mountains, Iran. Geomorphology, 175-176: 86-97. DOI: 10.1016/j.geomorph.2012.06.025.
Allahyari, K., Saccani, E., Rahimzadeh, B. & Zeda, O., 2014- Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): new evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran, Journal of Asian Earth Sciences, 79: 312–328. DOI: 10.1016/j.jseaes.2013.10.005.
Allahyari, K., Saccani, E., Pourmoafi, M., Beccaluva, L. & Masoudi, F., 2010- Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran): implications for the geodynamic evolution of the
Neo-Tethyan oceanic branch between Arabia and Iran. Ofioliti, 35: 71–90.  Doi:10.4454/ofioliti.v35i2.387.
Al-Hassan, M. E. & Hubbard, F. H., 1985-Magma segregations in a tectonic remnant of basalt ophiolite, Penjwin, NE Iraq. Ofioliti 10: 139-145.
Ao, S., Xiao, W., Khalatbari Jafari, M., Talebian, M., Chen, L., Wan, B., Ji, W. & Zhang, Z., 2016- U–Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolit (Iran); from continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys. Gondwana Research, 31:305-318.
Aswad, J. A., Sarmad, A., Al.Sheraefy, R. M., Nutman, A. P., Buckman, B., Jones, B. G. and Jourdan, F., 2016-  40Ar/39Ar hornblende and biotite geochronology of the Bulfat Igneous Complex, Zagros Suture Zone, NE Iraq: New insights on complexities of Paleogene arc magmatism during closure of the Neotethys Ocean.  Lithos,266: 406-413. DOI: 10.1016/j.lithos.2016.10.013.
Aswad, K. J., Aziz, N. R. and Koyi, H. A., 2011- Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros suture zone, Kurdistan region, Iraq. Geological Magazine, 148(5-6): 802-818. DOI: 10.1017/S0016756811000422.
Azer, M. K. and Khalil, A. E. S., 2005- Petrological and mineralogical studies of Pan-African serpentinites at Bir Al- Edeid area. Central Eastern Desert, Egypt. Journal of African Earth Sciences, 43: 525-536. Doi: 10.1016/j.jafrearsci.2005.09.008
Azizi, H., Hadi, A., Asahara, Y. and Mohammad, Y. O., 2013- Geochemistry and geodynamics of the Mawat mafic complex in the Zagros suture zone, northeast Iraq. Cent. Eur. J. Geosci., 5: 523-537. DOI: 10.2478/s13533-012-0151-6.
Azizi, H., Tanaka, T., Asahara, Y., Chung, S. L. and Zarrinkoub, M. H, 2011-Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U-Pb age and Sr-Nd isotopes. Journal of Geodynamics, 52: 304-320. Doi: 10.1016/j.jog.2011.03.001.
Bonev, N. and Stampfli, G., 2009- Gabbro, plagiogranite and associated dykes in the suprasubduction zone Evros Ophiolites, NE Greece, Geological Magazine, 146: 72-91. DOI: 10.1017/S0016756808005396.
Braud, J. and Bellon, H., 1974- Donnes' nouvelles sur le domaine metamorphique du Zagros (zone de Sanandaj- Sirjan) au niveau de Kermanshah-Hamadan; nature, age et interpretation des series métamorphiques et des intrusions évolution structural: Paris, Université Paris-Sud, 20p.
Braud, J., 1987- La suture du Zagros au niveau de Kermanshah (Kurdistan Iranien): reconstitution pale´oge´ographique, e´volution ge´odynamique, magmatique et structurale, The`se, Universite´ Paris-Sud. 489.
Choi, S. H., Shervais, J. W. & Mukasa, S. B., 2008- Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology, 156(5): 551-576. DOI: 10.1007/s00410-008-0300-6.
Delaloye, M., and Desmons, J., 1980- Ophiolites and mélange terranes in Iran: A geochronological study and its paleotectonic implications. Tectonophysics, 68: 83–111. Doi: 10.1016/0040-1951(80)90009-8.
Dilek, Y. and Furnes, H., 2009- Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113: 1-20. DOI: 10.1016/j.lithos.2009.04.022.
Downes, H., 2001- Formation and modification of the shallow sub-continental lithospheric mantle: A review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and Central Europe. Journal of Petrology, 42: 233-250. DOI: 10.1093/petrology/42.1.233.
Farahat, E. S., 2008- Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petrogenetic implications. Chemie der Erde-Geochemistry, 68(2): 193-205. DOI: 10.1016/j.chemer.2006.01.003.
Ghasemi, A. & Talbot, C. J., 2006A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26: 683–693. doi:10.1016/j.jseaes.2005.01.003.
Godard, M., Jousselin D. and Bodinier, J. L., 2000- Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180(1-2): 133-148.
Ghazi, A. M. and Hassanipak A. A., 1999- Geochemistry of subalkaline and alkaline extrusives from the Kermanshah ophiolite, Zagros suture zone, western Iran: implications for Tethyan plate tectonics. Journal of Asian Earth Sciences, 17(3): 319-332. DOI: 10.1016/S0743-9547(98)00070-1.
Hebert, L. B., Asimow, P. and Antoshechkina, P., 2009- Fluid source-based modeling of melt initiation within the subduction zone mantle wedge: Implications for geochemical trends in arc lavas. Chemical Geology. CHEMGE- 15780; No of Pages 14. DOI: 10.1016/j.chemgeo.2009.06.017.
Hickey, R. L. and Frey, A. F., 1982- Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta 46: 2099-2115. DOI: 10.1594/PANGAEA.707055.
Ismail, S. A., Mirza, T. M. and Carr, P., 2010- Platinum-group element geochemistry in podiform chromitites and associated peridotites of the Mawat ophiolite, northeastern Iraq. Journal of Asian Earth Sciences, 37: 31-41.
Irvine, T. N. & Baragar, WRA., 1971- A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci
8:523-548. DOI: 10.1139/e71-055.
Juteau, T. and Maury, R., 2009- La crout Océanique, Pétrologie et Dynamique Engogene. Société Géologique de France Vuibert. Paris, Cedex 13,470pp.
Khalatbari Jafari, M., Babaie, A. H. and  Moslempour, M. E., 2016- Mid-ocean-ridge to suprasubduction geochemical transition in the hypabyssal and extrusive sequences of major Upper Cretaceous ophiolites of Iran. The Geological Society of America, 2525 (07).
Kretz, R., 1983Symbols for rock-forming minerals. American mineralogist, 68: 277-279.
Leterrier, J., 1985- Mineralogical, geochemical and isotopic evolution of two Miocene mafi c intrusions from the Zagros (Iran). Lithos, 18: 311-329. DOI: 10.1016/0024-4937(85)90034-9.
Malvoisin, B., 2015-Mass transfer in the oceanic lithosphere: serpentinization is not isochemical. Earth and Planetary Science Letters, 430: p. 75-85. DOI: 10.1016/j.epsl.2015.07.043.
Moinevaziri, H., Akbarpour, A. and Azizi, H., 2015- Mesozoic magmatism in the northwestern Sanandaj–Sirjan zone as an evidence for active continental margin. Arabian Journal of Geosciences, 8(5): 3077-3088. DOI: 10.1007/s12517-014-1309-y
Monsef, I., Monsef, R., Mata, J., Zhang, Zh., Pirouz, M., Rezaeian, M., Esmaeili, R. and Xiao, W., 2018- Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: Constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran). Gondwana Research, 62:287-305. DOI: 10.1016/
Morishita, T., Maeda, J., Miyashita, S., Kumagai, H., Matsumoto, T. and Dick, H. J. B., 2009- Petrology of local concentration of chromian spinel in dunite from the slow spreading   southwest Indian Ridge. European Journal of Mineralogy, 19: 871-882.
Mouthereau, F., Lacombe, O. and Vergés, J., 2012- Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532–535: 27-60. DOI: 10.1016/j.tecto.2012.01.022.
Nicolas, A. and Prinzhofer, A., 1983- Cumlative or residual origin for the transition zone in ophiolites., Jurnal of structural evidence, 24:188-206 . DOI: 10.1093/petrology/24.2.188.
Nicholson, K. N., Black, P. M., Hoskin, P. W. O. and Smith, I. E. M., 2004- Silicic volcanism and back arc extension related to migration of the late Cenozoic Australian-Pacific plate boundary. Journal of volcanology and Geothermal Research, 131: 295-306.doi: 10.1016/S0377-0273(03)00382-2.
Ningthoujam, P. S., Dubey, C. S., Guillot, S., Fagion, A. S. and Shukla, D. P., 2012- Origin and serpentinization of ultramafic rocks of Manipur Ophiolite Complex in the Indo-Myanmar subduction zone, Northeast India. Journal of Asian Earth Sciences, 50:128-140. DOI: 10.1016/j.jseaes.2012.01.004.
Niu, Y. L., 2004- Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45: 2423-2458. DOI: 10.1093/petrology/egh068.
Nouri, F., Azizi, H., Golonka, J., Asahara, Y., Orihashi, Y., Yamamoto, K., Tsuboi, M. and Anma, R., 2016-Age and petrogenesis of Na-rich felsic rocks in western Iran: evidence for closure of the southern branch of the Neo-Tethys in the Late Cretaceous. Tectonophysics, 671: 151-172. DOI: 10.1016/j.tecto.2015.12.014.
Paulick, H., Bach, W., Godard, M., De Hoog, J. C. M., Suhr, G. and Harvey, J., 2006- Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209) : implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234: 179–210. doi:10.1016/j.chemgeo.2006.04.011.
Pearce, J. A., 2008- Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1): 14-48. DOI: 10.1016/j.lithos.2007.06.016.
Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J. and Leat, P. T., 2000- Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contribution to Mineralogy and Petrology, 139: 36-53. DOI: 10.1007/s004100050572.
Pearce, J. A. and Norry, M. J., 1979-Petrogenetic implications of Ti, Zr, Y and Nb variation in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33- 47.
Pirouz, M., 2018- Post-collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting. International Journal of Earth Sciences, 107(5): 1603-1621. DOI: 10.1007/s00531-017-1561-y.
Rajabzadeh, M. A., Dehkordi, T. N. and Caran, S., 2013- Mineralogy, geochemistry and geotectonic significance of mantle peridotites with high-Cr chromitites in the Neyriz ophiolite from the outer Zagros ophiolite belts, Iran. Journal of African Earth Sciences, 78:1-15. DOI: 10.1016/j.jafrearsci.2012.09.013.
Ricou, L. E., Braud, J. and Brunn, J. H., 1977- Le Zagros: Livre à la Mémoire de A.F. de Lapparent (1905–1975): Mémoire hors Série de la Société Géologique de France 8, p. 33-52.
Saccani, E., Allahyari, K. and Rahimzadeh, B., 2014- Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan region, Iran): evidence for interaction between MORB-type asthenosphere and OIB-type components in the southern Neo-Tethys Ocean. Tectonophysics, 621: 132-147. DOI:10.1016/j.tecto.2014.02.011.
Saccani, E., Allahyari, K., Beccaluva, L. and Bianchini, G., 2013- Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research, 24(1): 392-411. DOI: 10.1016/
Shervais, J. W., 1982- Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and planetary Science letters, 59(1): 101-118. X(82)90120-0.
Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in Ocean Basins. Geological Society of London Special Publications, 42: 313–345. DOI: 10.1144/GSL.SP.1989.042.01.19.
Talebian, M. and Jackson, J., 2002- Offset on the main recent fault of NW Iran and implications on the late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International, 150: 422-439.
Tanirli, M. and Rizaoglu T., 2016- Whole-rock and mineral chemistry of mafic cumulates from the Low-Ti ophiolite in the southern part of Kahramanmaras, Turkey. Russian Geology and Geophysics, 57:1398-1418.
Tian, L., Castillo, P. R., Hawkins, J. W., Hilton, D. R., Hanan, B. B. and Piatruszka, A. J., 2008- Major and trace element and Sr–Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research 178, 657–670.
Vermeesch, P., 2006- Tectonic discrimination diagrams revisited, Geochemistry, Geophysics and Geosystem, 7: 1-55.
Vincent, S. J., Allen, M. B., Ismail-Zadeh, A. D., Flecker, R., Foland, K. A.  and Simmons, M. D., 2005- Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geological Society of America Bulletin, 117:1513-1533.doi: 10.1130/B25690.1.
Whitechurch, H., Omrani, J., Agard, P., Humbert, F., Montigny, R. and Jolivet, L., 2013- Evidence for Paleocene-Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back–arc to arc: implications for regional geodynamics and obduction. Lithos, 182-183:11-32. DOI: 10.1016/j.lithos.2013.07.017.
Winchester, J. A. and Floyd, P. A., 1997- Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. DOI: 10.1016/0009-2541(77)90057-2.
Workman, R. K. and Hart, S. R., 2005- Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231: 53–72. doi:10.1016/j.epsl.2004.12.005.
Wrobel-Daveau, J. C., Ringenbach, J. C., Tavakoli, S., Ruiz, G., Masse, P. and Frizonde Lamotte, D., 2010- Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran). Arabian Journal of Geosciences, 3:499-513. DOI: 10.1007/s12517-010-0209-z.
Xia, B., Yu, H. X., Mei, H. J., Chen, G. W. & Qi, L., 2003-Geochemistry of basalts: evidence for formation of Dazhu ophiolite, Tibet (China), in a Supra subduction zone environment. Journal of Geological Society of India, 61:7-15.
Xiong, X. L., Adamb, T. J. and Greenb, T. H., 2005- Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology, 218: 339-359. DOI: 10.1016/j.chemgeo.2005.01.014.
Zhang, C., Liu, C. Z., Wu, F. Y., Zhang, L. L. and Ji, W. Q., 2016- Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, south Tibet. Lithos 245: 93-108. doi: 10.1016/j.lithos.2015.06.031.