Document Type : Original Research Paper

Author

Assistant Professor, Department of Geology, Faculty of Sciences, Khoramabad Branch, Islamic Azad University, Khoramabad, Iran

Abstract

The chemical composition of chlorite group minerals show that physicochemical condition of crystallization and their formation. The chemical analysis of chlorite from biotite alteration has done based on 30 points of 8 rock samples by electron microprobe. The composition of chlorite samples is located in repidolite- pychnochlorite domain. The mole fraction in the interlayer phase, range from 0.97 to 0.99, indicating a complete lack of smectite layers and purity of chlorite. Calculation of the structural formula of chlorites in Malvak area show that the number of silicon atoms are in the range of 2.64 to 2.91 (apfu) and the sum of the octahedral cations are 6 (apfu). Chlorites of the Malvak area are trioctahedral type. The low titanium content of chlorites, the presence of titanium minerals coexite with chlorite cleavage, and the presence of early biotite crystals are evidence of biotite to chlorite alteration. The mean temperature of chlorites in the Malvak area is 340 ºC, which corresponds to the temperature obtained with the geothermometry of biotite-altered to chlorites. Mesothermal type fluids from the granitoid mass in the study area have been effective in chlorite occurrence. Also, regional metamorphism has played an important role in the chlorite formation.

Keywords

Main Subjects

 
References
Ahmadi-Khalaji A., Esmaeily D., Valizadeh M. V., Rahimpour-Bonab, H., 2007- Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran, Journal of Asian earth Sciences 29: 859-877. DOI: 10.1016/j.jseaes.2006.06.005.
Bailey, S. W., 1988- Chlorites: structures and crystal chemistry, Rev. Miner. 19: 347–404.
Bloodate, E. S., Hughes, G. M., Dyar, M. D., Grew, E. S. and Guidotti, C., 1999- Linking structure and chemistry in the schorl–dravite series, American Mineralogist 84: 922-928.
 http://www.minsocam.org/msa/ammin/toc/Articles_Free/1999/Bloodaxe_p922-928_99.pdf.
Caritat, P., Hutcheon, I., Walshe, J. L., 1993- Chlorite geothermometry: a review, Clays and clay minerals 41: 219-239.
 https://link.springer.com/article/10.1346/CCMN.1993.0410210.
Cathelineau, M. and Nieva, D., 1985- A chlorite solid solution geothermometer The Los Azufres (Mexico) geothermal system, Contribution to Mineralogy and Petrology 91: 235-244. https://link.springer.com/article/10.1007/BF00413350.
Cathelineau, M., 1988- Cation site occupancy in chlorites and illites as a function of temperature, Clay Minerals 23: 471-485. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.599.4649&rep=rep1&type=pdf.
Ciesielczuk, J., 2000- Geochemistry of the hydrothermally altered granite from the shear zone in Borów (Strzegom-Sobótka massif), Pr. Spec.PTM 17: 132–134.
Czamanske, G. K., Ishihara, S. and Atkin, S., 1981- A Chemistry of rock-forming minerals of theCretaceous Paleocene batholith in southwestern Japan and implications for magma genesis, Journal of Geophysical Research 86(B11): 10431-10469. https://doi.org/10.1029/JB086iB11p10431.
Eggleton, R. A., Banfield, J. F., 1985- The alteration of granitic biotite to chlorite, Am. Miner. 70: 902–910.
Foster, M. D., 1962- Interpretation of the composition and classification of the chlorites", USGS Prof Paper 414-A: 1-33.
Klein, C., Cornelius, S. and Hurlbut, Jr., 1999- Manual of mineralogy(after james D.Dana), 21 st. edition. Revised. John Wiley and Sons, New York. https://openlibrary.org/books/OL2856976M/Manual_of_mineralogy.
Hiller, S. and Velde, B., 1991- Octahedral occupancy and the chemical composition of diagenetic (low temperature) chlorites, Clay minerals 26: 149-168. DOI: 10.1180/claymin.1991.026.2.01.
Hyndman, D. W., 1985- Petrology of igneous and metamorphic rocks", 2nd Ed., McGraw-Hill., NewYork 786p.
Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D. and Vieillard, P., 2009- Application of chemical geothermometry to low-temperatur trioctaedral chlorites", Clays and clay minerals 57: 371-382.
https://link.springer.com/article/10.1346/CCMN.2009.0570309.
Jiang, W. T., Peacor, D. R. and Buseck, P. R., 1994- Chlorite geothermometry? Contamination and apparent octahedral vacancies, Clays Clay Miner. 42(5): 593–605. http://www.clays.org/journal/archive/volume%2042/42-5-593.pdf.
Kranidiotis, P. Y. and MacLean, W. H., 1987- Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami", Quebec. Economic Geology 82: 1898-1911.
Lori, A., Bettison, L. A. and Schiffman, P., 1988- Compositional and structural variations of phyllosilicates from Point Sal ophiolite, California, American Mineralogist 73: 62-76.
Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B. and Mohajjel, M., 2011- U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran, Journal of Asian Earth Sciences 41: 238-249. DOI: 10.1016/j.jseaes.2011.03.006.
Masoudi, F., 1997- Contact metamorphism and pegmatite development in the region SW of Arak, Iran, PhD Thesis, Leeds University, UK.
Masoudi, F., Yardley, B. W. D. and Cliff,  R. A., 2002- Rb-Sr geochronology of pegmatites, plutonic rocks and a hornfels in the region southwest of Arak,Iran", Islamic Republic of Iran Journal of Sciences 13(3): 249-254. https://www.researchgate.net/publication/266034929.
Mata, M. P., Giorgetti, G., Árkai, P. and Peacor, D. R., 2001- Comparison of evolution of trioctahedral chlorite/ berthierine/smectite in coeval metabasitesand metapelites from diagenetic to epizonal grades, Clays and Clay Minerals 49(4): 318-332. DOI: 10.1346/CCMN.2001.0490406.
McDowell, S. D. and Elders, W.A., 1980- Authigenic layer silicate minerals in borehole Elmore 1,Salton sea geothermal field, California, USA, Contrib. Mineral. Pet. 74: 293-310.
 https://pdfs.semanticscholar.org/1f7c/efd8f1c8375872ae4656a0559f3c9ce05e28.pdf.
Morad, S., Sirat, M., M. A. K. and  El-Ghali, H. Mansurbeg, 2011- Chloritization in Proterozoic granite from the Äspö Laboratory, southeastern Sweden:record of hydrothermal alterations and implications for nuclear waste storage", Clay Minerals  46(3): 495-513. DOI: https://doi.org/10.1180/claymin.2011.046.3.495.
Parry, W. T. and Downey, L. M., 1982- Geochemistry of hydrothermal chlorite replacing igneous biotite, Clays and Clay Minerals 30: 81-90. https://link.springer.com/article/10.1346/CCMN.1982.0300201.
Pflumio, C., 1991- Evidences for polyphased oceanic alteration of the extrusive sequence of the Semail ophiolite from the Salahi Block (Oman)",in: Peters, T.J.(Eds), Ophiolite genesis and evolution in the oceanic lithosphere 313-351.
https://link.springer.com/chapter/10.1007/978-94-011-3358-6_17.
Plissart, G. and Féménias, O., 2009- Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita-Iuti ophiolite, south western Romania, Canadian Mineralogists 47: 81–105. DOI: 10.3749/canmin.47.1.81.
Schmidt, D., Livi, K. J. T. HRTEM and SAED investigations of polytypism, 1999- stacking disorder,crystal growth, and vacancies in chlorites from sub greeenschist facies outcrops. Am. Miner. 84:160–170.
Siivola, J. and Schmid, R., 2017- List of mineral abbreviation Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks", American Mineralogist, Web version 01.02.07.
Stocklin, j., 1968- Structual history and tectonic of Iran, a review, American association of Petrolium Geologist Bulletine 52-7: 1229-1258.
Tabbkh-Shabani, A. A., 2009- Mineral Chemistry of Chlorite Replacing Biotite from Granitic Rocks of the Canadian Appalachians, Journal of Sciences, Islamic Republic of Iran 20(3): 265-275.
https://jsciences.ut.ac.ir/article_20106_238db3d3c20923d5dd39100f7b4ce53e.pdf
Vidal, O. and Parra, T., 2005- Vieillard P Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation, Am.Miner. 90: 347–358. DOI: 10.2138/am.2005.1554
Wilamowski, A., 2002- Chloritization and polytypism of biotite in the £omnica granite, Karkonosze Massif, Sudetes, Poland: stable isotope evidence. Chem. Geol. 182(2–4): 529–547.
Xie, X., Byerly, G. R. and Ferrell, R. E., 1997- jr IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry, Contr. Miner. Petrol. 126: 275–291.
DOI: 10.1007/s004100050250.
Yardley, B. W. D., 1989- An introduction to metamorphic petrology, Longman Scientific, Technical, Harlow, England 248p.
Zadmehr, F. and Shahrokhi, S.V., 2019- Separation of geochemical anomalies by Concentration-Area and Concentration-Number methods In the Saqez 1:100,000 Sheet, Kurdistan", Iranian journal of Earth Science, 11(3): 196-204. http://ijes.mshdiau.ac.ir/article_665317.html