Document Type : Original Research Paper

Authors

1 Ph.D. Student, Faculty of Basic Sciences, Department of Geology, Tarbiat Modares University, Tehran, Iran

2 Associate Professor, Faculty of Basic Sciences, Department of Geology, Tarbiat Modares University, Tehran, Iran

3 Professor, School of Earth Sciences and Resources, China University of Geosciences, Wuhan, China

Abstract

The Kahak mafic volcanic rocks in the central part of the Urumieh-Dokhtar Magmatic Arc are composed of ‎basalts‏ ‏and‏ ‏basaltic ‎andesite and show sub alkaline to transitional affinity. They are calc-alkaline based on the tholeiitic index (THL). U-‎Pb zircon dating ‎yields almost 60‎‏ ‏‎(Middle Paleocene) and 24 to 19 Ma (Late Oligocene–Early Miocene) for andesitic basalt and basaltic ‎rocks ‎respectively. These rocks ‎are identified by LREE and LILE enrichment and HFSE depletion with relatively negative or without ‎Eu ‎anomalies and E-MORB like ‎pattern in multiple spider diagrams that.attributed to the subduction of the Neotethyan oceanic ‎slab ‎beneath the central Iranian microcontinent. Based on petrography, trace and rare earth elements, and isotopic features, ‎fractional ‎crystallization played a significant role ‎during magma evolution in these rocks. Trace element modeling suggests that the ‎studied mafic ‎rocks were derived by partial melting ‎within the spinel‏ ‏lherzolite mantle. Isotopic ratios also show that they resulted from ‎lithospheric ‎mantle metasomatized by ‎released fluids from subducted slab sediments. The studied samples might have formed in the ‎extensional regime ‎followed ‎by slab rollback and undergone a continental arc to back-arc basin transition during the Paleocene to ‎Miocene. This basin might ‎have ‎been closed in the‏ ‏middle Miocene.

Keywords

Main Subjects

References
  Aghanabati, A., 1998- Major sedimentary and structural units of Iran (map). Geosciences 7, Geological Survey of Iran.
Ahmad, T., and PoshtKuhi, M., 1993- Geochemistry and petrogenesis of Urumiah-Dokhtar volcanic belt around Nain and Rafsanjan areas: a preliminary study. Treatise on the geology of Iran.Iranian Ministry of Mines and Metals 90.
Alavi, M., 1994- Tectonics of Zagros Orogenic belt of Iran, new data and interpretation, Tectonophysics 229, 3, 211–238. Doi: 10.1016/0040-1951(94)90030-2.
Alavi, M., 2004- Regional stratigraphy of the Zagros fold–thrust belt of Iran and its proforeland evolution. American Science 304, 1–20.
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000- Petrogenetic evolution oflate Cenozoic, postcollisionvolcanism in western Anatolia, Turkey.Volcanology and Geothermal Research 102, 67–95.Doi:10.1016/S0377-0273(00)00182-7.
Amidi, S.M., Emami, M.H., and Michel, R., 1984- Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation.Geologische Rundschau 73, 917-932.
Babazadeh, Sh., Ghorbani, M.R., Bröcker, M.D., Antonio,  M., Cottle, J., Gebbing, T., Carmine, Mazzeo, F., and Ahmadi, P., 2017- Late Oligocene-Miocene mantleupwelling and interaction inferred from mantle signatures in gabbroic to granitic rocks from the Urumieh-Dokhtar arc, south Ardestan, Iran. Internatinal GeologyReview 59 (12),1590-1608. 
Bagas, L., Bierlein, F. P., English, L., Anderson, J.A., Maidment, D., and Huston, D. L., 2008- An example of a Palaeoproterozoic back-arc basin: Petrology and geochemistry of the ca. 1864 Ma Stubbins Formation as an aid towards an improved understanding of the GranitesTanami rogen, Western Australia, Precambrian Research 166, 168-184.
Beccaluva, L., Coltortim, I M., Giunta, G., and Siena, F., 2004- Tethyan vs Cordilleran ophiolites: A reappraisal of distinctive tectono-magmatic features of supra-subduction complexes in relation to the subduction mode. Tectonophysics 393, 163–74.
Berberian, F., and Berberian, M., 1981-Tectono-plutonic episodes in Iran, in Gupta, H.K., and Delany, F.M., eds., Zagros, Hindukosh, Himalaya geodynamic evolution: Washington,DC, AGU, 5–32.Doi: 10.1029/GD003p0005.
Brown, G.C., Thorpe, R.S., and Webb, P.C., 1984- The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources.Geological Society of London 141,413-26.
Brunet, M.F., Wilmsen, M., and Granath, J.W., 2009- South Caspian to Central Iran Basins.Geological Society of London 312. Doi: https://doi.org/10.1144/SP312.
Caillat, C., Dehlavi, P., Martel Jantin, B., 1978- Geologie de la region de Saveh (Iran). Contribution a l'etude du volcanism et du plutonism tertiaresde la zone de I Iran central. Ph.D. thesis, Grenoble, France.
Chen, S.S., Shi, R.D., Zou, H.B., Huang, Q.S., Liu, D.L., Gong, X.H., Yi, G.D., and Wu, K., 2015- Late Triassic island-arc-back-arc basin development along theBangong-Nujiang suture zone (central Tibet): Geological, geochemical andchronological evidence from volcanic rocks. Lithos 230, 30–45. Doi:10.1016/j.lithos.2015.05.009.
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., and Iizuka, Y., 2013- Zircon U Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162–163, 70-87.
De Paolo, D.J., and Daley, E.E., 2000- Neodymium isotopes in basalts of the southwest basinand range and lithospheric thinning during continental extension.Chemical Geology 169,157–185.
Dupré, B., and Allègre, C.J., 1983- Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 42–146.
Falcon, N., 1974- Zagros Mountains, Mesozoic-Cenozoic OrogenicBelts, Geological Society, London, Special publications4,199–211.
Faure, G., and Mensing, T.M., 2005- Isotope Principle and Applications.3rd Edition, John Wiley & Sons, Hoboken.
Frey, F.A., Green, D.H., and Roy, S.D., 1978- Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Petrology 19, 463-513.
Ghasemi, A., and Talbot, C.J., 2006- A new scenario for theSanandaj–Sirjan zone (Iran). Asian Earth Sciences  26, 683–693.Doi:10.1016/j.jseaes.2005.01.003.
Ghorbani, M.R., Graham, I.T., and Ghaderi, M., 2014-Oligocene– Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. International Geology Review 56, 1039–1050. doi:10.1080/00206814.2014.919615.
Gill, R., 2010- Igneous Rocks and Processes, a pratical guide. Wiley-Blackwel, UK 428.
Hart, S.R., Gerlach, D. C., and White, W. M., 1986-  A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing, Geochim.Geochimica et Cosmochimica Acta 50(7), 1551–1557.
Hassanzadeh, J., and Wernicke, B.P., 2016- The Neotethyan Sanandaj‐Sirjan zone of Iran as an archetype for passive margin‐arc transitions.journal of Tectonics, 35, 586-621. Doi: 10.1002/2015TC003926.
Hickey-Vargas, R., Hergt, J.M., and Spadea, P., 1995- The Indian Ocean-type isotopic signature in western Pacific marginal basins: origin and significance. Active Margins and Marginal Basins of the Western Pacific, 175-197.
Hoffer, G., Eissen, J.P., Beat, B., Bourdon, E., Fornari, M., and Cotton, J., 2008- Geochemical and petrological constraints on rear-arc magma genesis processes in Ecuador: the puyo cones and Mero lavas volcanic formations. Volcanology geothermal research 176, 107-118.Doi:10.1016/j.jvolgeores.2008.05.023.
Kelemen, P.B., Hanghoj, K., Greene, A.R., 2004- One View of the Geochemistry of Subduction related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry 3, 593-659. Dio: 10.1016/B0-08-043751-6/03035-8.
Keskin, M., Pearce, J. A., and Mitchell, J. G., 1998-Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum–Kars Plateau, North Eastern Turkey. Volcanology and Geothermal Research 85,355-404.Doi 10.1016/S0377-0273(98)00063-8.
Koschek, G., 1993- Origin and significance of the SEM cathodoluminescence from zircon. Microscopy 171, 223-232. Doi:10.2113/0530427.
Li, Y. B., Kimura, J. I., Machida, S., Ishii, T., Ishiwatari, A., Maruyama, S., and Miyazaki, T., 2013- High-Mg adakite and low-Ca boninite from a Bonin Fore-arc seamount: Implications for the reaction between slab melts and depleted mantle. Petrology 54, 1149–1175.
Liu, Y.S., Hu, Z.C., Gao, S., Gunter, D., Xu, J., Gao, C.G., Chen, H.H., 2008- In situ analysis of major and trace elements of anhydrous minerals byLA-ICP-MS without applying an internal standard. Chemical Geology 257,34–43. Doi:10.1016/j.chemgeo.2008.08.004.
Maclean, W.H., and Barrett, T.J., 1993- Lithogeochemical techniques usingimmobile elements, Geochemical Exploration 48, 109-13.
Middlemost, E. A. K., 1994- Naming material in the magma/igneous rock system. Earth-Science Review 37, 215–224. Doi:10.1016/0012-8252(94)90029-9.
Miyashiro, A., 1974- Volcanic rock series in island arcs and active continental margins. American Science 274, 321–355.
Mohajjel, M., and Fergusson, C.L., 2000- Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, Western Iran. Structural Geology 22, 1125–1139.
Morley, C.K., Kongwung, B., ulapour, A.A.J., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K., and Kazeni, H., 2009- Structural development of a major late Cenozoic basin and transpressional belt in Central Iran: the Central basin in the Qom-Saveh area. Geosphere, 5, 325-362. Doi: 10.1130/GES00223.1.
Nouri, F., Asahara, Y., Azizi, H., Yamamoto, K., B, and Tsuboi, M., 2017- Geochemistry and petrogensis of the Eocene back arc mafic rocks inthe Zagros suture zone, northern Noorabad, western Iran. Geochemistry 77, 3, 517-533. Doi:10.1016/j.chemer.2017.06.002.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., and Jolivet, L., 2008- Arc magmatism and subduction history beneath the Zagros Mountains, Iran: A new report ofadakites and geodynamic consequences: Lithos, 106, 380–398. Doi:10.1080/00206814.2019.1644677.
Pearce, J.A., 2008- Geochemical fingerprinting of oceanic basalts with applicationsto ophiolite classification and the search for Archean oceanic crust. Lithos 100,14-48.Doi:10.1016/j.lithos.2007.06.016.
Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., 2005- Geochemical mapping of the Mariana arc basin system: Implications for the nature and distribution of subduction components. Geochemistry Geophysics Geosystem 6, 7.
Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., 2005- Geochemical mapping of the Mariana arc basin system: Implications for the nature and distribution of subduction components. Geochemistry Geophysics Geosystem 6, 7.Doi: 10. 1029/2004GC000895.
Reichow, M.K., Saunders, A., White, R., Al'Mukhamedov, A., and Medvedev, A. Y., 2005- Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos 79(3), 425-452.
Rolland, Y., Galoyan, G., Bosch, D., Sosson, M., Corsini, M., Fornari, M., and Verati, C.,2009- Jurassic back-arc and Cretaceous hot-spot series in the Armenianophiolites: implications for the obduction process. Lithos 112, 163–187.Doi:10.1016/j.lithos.2009.02.006.
Rudnick, R. L., and Gao, S., 2003- Composition of the continental crust, in The Crust, Treatise on Geochemistry, edited by R. L. Rudnick Elsevier, Amsterdam, 1–64,
Saunders, A.D.,  and Tarney, J., 1984- Geochemical characteristics of basaltic volcanismwithin back-arc basins.Geological Society, London, Special Publications16, 59–76.
Sayit, K., Marroni, M., Goncuoglu, M.C., Pandolfi, L., Ellero, A., Ottria, G., and Frassi, C., 2016- Erratum to: Geological setting and geochemical signatures of the mafic volcanic rocks from the Intra-Pontide Suture Zone: implications for the geodynamic reconstruction of the Mesozoic Neotethys. Asian Earth Sciences 105, 39-64.Doi: 10.1007/s00531-015-1202-2.
Shafaii Moghadam, H., Stern, R.J., Griffin, W.L., Khedr, M.Z., Kirchenbaur,  M., Ottley, C.J., Whattam, S.A., Kimura, J., Ghorbani, G., Gain, S., O’Reilly, S.Y., and Tamura, A., 2019- Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran.Geological Society of America Bulletin 132(5-6). Doi: 10.1130/B35065.1.
Shahabpour, J., 2007- Island-arc affinity of the central Iranian volcanic belt: Asian Earth Sciences 30, 652– 665. Doi:10.1016/j.jseaes.2007.02.004.
Shahsavari Alavijeh, B., Rashidnejad-Omran, N., and Toksoy-Köksal, F., 2019- Oligocene subduction-related plutonism in the Nodoushan area, Urumieh-Dokhtar magmatic belt: Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry, Geoscience Frontiers10,725-751. Doi:10.1016/j.gsf.2018.03.017.
Shervais, J.W., 1982- Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101-118.Doi:10.1016/0012-821X(82)90120-0.
Shinjo, R., and Kato, Y., 2000- Geochemical constraints on the origin of bimodal magmatismat the Okinawa Trough, an incipient back-arc basin. Lithos 54, 117-137.Doi:10.1016/S0024-4937(00)00034-7.
Shinjo, R., Chung, S.L., Kato, Y., and Kimura, M., 1999- Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu arc: implications for the evolution of a young, intracontinental back.Geophysical research, Doi:10.1029/1999JB900040.
Stöcklin, J., 1968- Structural history and tectonics of Iran: a review, American Association of Petroleum Geologists Bulletin 52, 1229–1258.

Sun, S., and McDonough, WF., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle omposition and processes. Geological Society London Special Publications42, 313-345.

Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., 2011- A Paleogene extentional arc flare-up in Iran. Tectonic30, 3008–3302.Doi:10.1029/2010TC002809.
Wang, H., Wu, Y.B., Qin, Z.W., Zhu, L.Q., Liu, Q., Liu, X.C., Gao, S., Wijbrans, J.R., Zhou, L., Gong, H.J., 2013- Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogeny, central China: implications for the geodynamic evolution of the North Qinling arc-back-arc system. Lithos 179, 1-15.Doi:10.1016/j.lithos.2013.07.021.
Wang, Y.J., Zhang, F.F., Fan, W.M., Zhang, G.W., Chen, S.Y., Cawood, P.A., and Zhang, A.M., 2010-Tectonic setting of the South China Block in the early Paleozoic:resolving intracontinental and ocean closure models from detrital zircon U–Pbgeochronology. Tectonics 29.
White, W.M., Hofmann, A.W., 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825.
Winchester, J.A., Floyd, P.A., 1977- Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325-343.Doi:10.1016/j.lithos.2016.01.012.
Woodhead, J.D., Hergt, J.M., Davidson, J.P., and Eggins, S.M., 2001- Hafnium isotope evidence for conservative element mobility during subduction zone processes: Earth and Planetary Science Letters 192, 331- 346.
Yeganehfar, H., Ghorbani, M.R., Shinjo, R., and Ghaderi, M., 2013- Magmatic and geodynamic evolution of Urumieh–Dokhtar basic volcanism, Central Iran: Major, trace element, isotopic, and geochronologic implications. International Geology Review 55, 767–786.
Zheng, Y.F., 2012- Metamorphic chemical geodynamics in continental subduction zones.Chemical Geology 328, 5-4.Doi:10.1016/j.chemgeo.2012.02.005.
Zimmer, M. M., Plank, T., Hauri, E. H., Yogodzinski, G. M., Stelling, P., Larsen, J., Singer, B., Jicha, B., Mandeville, C., and Nye, C. J., 2010- The Role of Water in Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index. Petrology 51, 2411-2444.