Document Type : Original Research Paper

Authors

1 M.Sc. Student, Department of Geology, University of Zanjan, Zanjan, Iran

2 Associate Professor, Department of Geology, University of Zanjan, Zanjan, Iran

Abstract

North Chargar Cu-Au mineralization located within the Tarom-Hashtjin sub-zone. This area composed of andesite and quartz-andesite lavas alternated with tuffaceouce rocks. The volcanic rocks have calc-alkaline nature and were formed in an active continental margin. Mineralization present as ore-bearing quartz vein-veinlets within a silicified zone. Based on mineralogical studies, chalcopyrite and pyrite are the main ore minerals, and malachite, covellite, chalcocite and goethite were formed by supergene processes. Quartz, barite and chlorite present as gangue minerals. Hydrothermal alterations include silicification, chloritization, sericitization and argillic. Ore and gangue minerals show disseminated, vein-veinlet, brecciated, cockade, comb, replacement, relict and open space filling textures. Based on field and microscopic studies, Cu-Au mineralization in the north Chargar can be divided into four stages: 1- the first stage is silicification of volcano-sedimentary host rock along with disseminated pyrite mineralization, 2- the second stage present as chalcopyrite and pyrite-bearing quartz vein-veinlets and hydrothermal breccia cement, 3- the third stage includes barite vein-veinlets crosscutting the previous stages of mineralization, 4- the last stage is related to supergene processes. Geological features, mineralogy and ore structure-textures in the north Chargar Cu-Au occurrence indicate most similarity with base metal epithermal (intermediate sulfidation) deposit type.

Keywords

Main Subjects

 
Aldanmaz,  E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000- Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geoth. Res., 102: 67-95. doi:10.1016/S0377-0273(00)00182-7.
Boynton, W.V., 1984- Geochemistry of Rare Earth Elements: Meteorite Studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry, Elsevier, New York, 63-114.
Fitton, J.G., James, D., Kempton, P.D., Ormerod, D.S. and Leeman, W.P., 1988- The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the western United States. Journal of Petrology, Special Issue, 1: 331–349. doi:10.1093/petrology/Special_Volume.1.331.
Ghasemi Siani, M., Mehrabi, B., Azizi, H., Wilkinson, C.M. and Ganerod, M., 2015- Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran. Open Geosciences, 7: 207-222. doi;10.1515/geo-2015-0024.
Hastie, A.R., Ker, A.C., Pearce, J.A., and Mitchell, S.F., 2007- Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. Journal of Petrology, 48(12): 2341–2357. doi:10.1093/petrology/egm062.
Kamber, B.S., Ewart, A., Colleson, K.D., Bruce, M.C. and McDonald, G.D., 2002- Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144: 38-56. doi: 10.1007/s00410-002-0374-5.
Kouhestani, H., Azimzadeh, A.M., Mokhtari, M.A.A. and Ebrahimi, M., 2017- Mineralization and evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. N. Jb. Miner. Abh., 194(2):139-155. doi:10.1127/njma/2017/0036.
Kouhestani, H., Mokhtari, M.A.A., Chang, Z. and Johnson, C.A, 2018- Intermediate sulfidation type base metal mineralization at Aliabad- Khanchy, Tarom- Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 93: 1-18. doi:10.1016/j.oregeorev.2017.12.012.
Kuscu, G.G. and Geneli, F., 2010- Review of post-collisional volcanism in the Central Anatolian volcanic province (Turkey), with special reference to the Tepekoy volcanic complex. International Journal of Earth Sciences, 99(3): 593-621. doi:10.1007/s00531-009-0504-7.
McDonough, W.F., Sun, S.S., 1995- The composition of the Earth. Chemical geology, 120(3-4): 223-253. doi:10.1016/0009-2541(94)00140-4.
Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M. and Marsh, E.E., 2016- Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geology Reviews, 78: 41-57. doi:10.1016/j.oregeorev.2016.03.016.
Nabatian, G., Ghaderi, M., Daliran, F. and Rashidnejhad Omran, N., 2012- Sorkhe- Dizaj iron oxide- apatite ore deposit in the Cenozoic Alborz- Azarbaijan magmatic belt, NW Iran. Resource Geology, 63: 42-56. doi:10.1111/j.1751-3928.2012.00209.x.
Nabatian, Gh., Ghaderi, M., Corfu, F., Neubauer, F., Bernroider, M., Prokofiev, V. and Honarmand, M., 2014- Geology, alteration, age and origin of iron oxide–apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran. Mineralium Deposita, 49: 217–234. doi:10.1007/s00126-013-0484-1.
Nabatian, G., Jiang, S.Y., Honarmand, M. and Neubauer, F., 2016- Zircon U–Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos, 244: 43-58. doi:10.1016/j.lithos.2015.11.020.
Pearce, J., 1996- A user guide to basalt discrimination diagrams. In: Wyman, D.A. (Eds.), Trace element geochemistry of volcanic rocks: applications for massive sulfide exploration. Geological Association of Canada, Short Course Notes, 12: 79-113.
Schandl, E.S. and Gorton, M.P., 2002- Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97(3): 629-642. doi:10.2113/gsecongeo.97.3.629.
Sillitoe, R.H. and Hedenquist, J.W., 2003- Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious-metal deposits. Economic Geology, Special Publication, 10: 315-343. doi:10.5382/SP.10.16.
Simmons, S.F., White, N.C. and John, D.A., 2005- Geological characteristics of epithermal precious and base metal deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, J.R. and Richards, J.P. (Eds.), Economic Geology, 100th Anniversary Volume, 485-522. doi:10.5382/AV100.16.
Srivastava, R.K. and Sigh, R.K., 2004- Trace element geochemistry and genesis of Per-Cambrian sub-alkaline mafic dikes from the central Indian Craton: evidence for mantle metasomatism. Journal of Asian Earth Science, 23: 373-389. doi:10.1016/S1367-9120(03)00150-0.
Whitney, D.L. and Evans, B.W., 2010- Abbreviation for names of rock- forming minerals. American Mineralogist, 95: 185-187. doi:10.2138/am.2010.3371.
Wright, J.B. and McCurry, P., 1997- Geochemistry of calc-alkaline volcanic in northwestern Nigeria, and a possible Pan-African suture zone. Earth and Planetary Science Letters, 37: 90-96. doi:10.1016/0012-821X(77)90149-2.
Yasami, N. and Ghaderi, M., 2019- Distribution of alteration, mineralization and fluid inclusion features in porphyry–high sulfidation epithermal systems: The Chodarchay example, NW Iran. Ore Geology Reviews, 104: 227–245. doi:10.1016/j.oregeorev.2018.11.006.