Document Type : Original Research Paper

Authors

1 Ph.D. Student, Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran

2 Assistant Professor, Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran

3 Assistant Professor, Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran

4 Professor, Department of Geology, Faculty of Sciences, Urmia university, Urmia, Iran

Abstract

The action of alteration processes on the Eocene tuffs has led to the formation of a spread argillic alteration zone in the Kamar district (south of Ardebil, Tarom-Hashtjin Zone). The aim of this study is to determine the factors controlling argillic alteration, using mineralogical studies and chemical alteration indices. Quartz, kaolinite, muscovite (sericite), rutile, anatase, illite, diaspore, alunite, albite, clinochlore, jarosite, gypsum, pyrite, orthoclase and dolomite are the mineral assemblage of this alteration zone. The mineralization of sulfides includes pyrite (predominantly), chalcopyrite, borneite, chalcocite, galena, and sphalerite. The chemical index of alteration (CIA) values are between 51.55 to 74.3 %, and the mineralogical index of alteration (MI) values vary from 8.22 to 48.3%. The mafic index of alteration (MIA(O)) ranges from 55.88% to 87.48%, Depletion of a large number of elements, including some immobile elements (Zr, Y, V, Al and LREEs), the presence of minerals indicating acidic pH, such as jarosite and alunite, and high-temperature minerals such as rutile and anatase, the presence of the vuggy quartz in some altered regions, and concomitant enrichment of As, Sb and Mo, in the Kamar argillic zone, bear similarities to the hot fluid alterations of high-sulfidation epithermal deposits.

Keywords

Main Subjects

References
Aja, S.U., 1998- The sorption of the rare earth element, Nd, onto kaolinite at 25°C, Clays and Clay Minerals, 46, 103– 109.DOI: 10.1346/CCMN.1998.0460112.
Alfieris, D., Voudouris, P., Spry, P.G., 2013- Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints, Ore Geology Reviews, 53, 159-180. DOI: 10.1016/j.oregeorev.2013.01.007.
Babcock, R.S., 1973- Computational models of metasomatic processes, Lithos, 6, 279–290.DOI:10.1016/0024-4937(73)90089-3.
Babechuk, M., Widdowson, M., Kamber, B., 2014- Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Decan Traps, India, Chemical Geology, 363, 56-75. DOI: 10.1016/j.chemgeo.2013.10.027.
Bau, M., Dulski, P., 1996- Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa, Precambrian Research, 79, 1-2, 37-55.  DOI:10.1016/0301-9268(95)00087-9.
Boyle, R.W., and Jonasson, I.R., 1984- The geochemistry of antimony and its use as an indicator element in geochemical prospecting,Geochemical Exploration, 20, 3, 223–302. DOI: 10.1016/0375-6742(84)90071-2.
Dongen, M., Wenberg, R.F., and Tomkins, A.G., 2010- REE-Y, Ti, and P Remobilization in Magmatic Rocks by Hydrothermal alteration during Cu-Au Deposit Formation, Economic Geology,105, 763-776.DOI: 10.2113/gsecongeo.105.4.763.
Douville, E., Bienvenu, P., Charlou, J.L., 1999- Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim et Cosmochimica Acta, 63,627–643. DOI: 10.1016/S0016-7037(99)00024-1.
Finlow-Bates, T., Stumpfl, E.F., 1981- The behaviour of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore deposits. Mineralium Deposita, 16, 319–328. DOI: 10.1007/BF00202743.
Grant, J.A., 2005- Isocon analysis: A brief review of the method and applications, Physical Chemistry, Eearth part, A/B/C, 30, 997–1004. DIO: 10.1016/j.pce.2004.11.003.
Gresens, R.L., 1967- Composition-volume relationships of metasomatism. Chemical Geology, 2, 47–65. DOI.org:10.1016/0009-2541(67)90004-6.
Haas, J., Shock, and E., Sassani, D., 1995- Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressure and temperatures. Geochimical et Cosmochimica, 59, 4329–4350.DOI:10.1016/0016-7037(95)00314-P.
Hikov, A., 2013- Geochemistry of hydrothermally altered rocks from the Asarel porphyry copper deposit, Central srednogorie. Geologica balcanica, 42. 1 – 3, 3-28. https://www.researchgate.net/publication/269705087.
Hoskin, P., and Schaltegger, U., 2003- The Composition of Zircon and Igneous and Metamorphic Petrogenesis, Reviews in Mineralogy and Geochemistry, 53(1), 27-62. Doi:10.2113/0530027.
Ishikawa, Y., Sawaguchi, T., Iwaya, S., and Horiuchi, M., 1976- Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Mining Geology, 26, 105–117. DOI:10.11456/shigenchishitsu1951.26.105.
Jansson, N.F., and Liu, W., 2020- Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden - constraints from solubility modelling, GFF, 142,2, 87-95. DOI:10.1080/11035897.2020.1751270.
Jiang, S., Wang, R., Xu, X., and Zhao, K., 2005-Mobility of high field strength elements (HFSE) in magmatic-metamorphic-,andsubmarine-hydrothermalsystems.PhysicsandChemistryof the Earth, 30, 1020–1029. DOI: 10.1016/j.pce.2004.11.004.
 
Khashgerel, B.E., Kavalieris, I., Hayashi, K., 2008- Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu– Au deposit, Oyu Tolgoi mineral district, Mongolia, Mineralium Deposita, 43, 913–932. DOI: 10.1007/s00126-008-0205-3.
Kikawada, Y., Uruga, M., Oi, T., and Honda, T., 2004- Mobility of lanthanides accompanying the formation of alunite group minerals, Radioanalytical and Nuclear Chemistry, 261, 3, 651–659.DOI: 10.1023/B: JRNC.0000037109.34238.cc.
Kompanchenko, A, A., Voloshin, A, V., and Balagansky, V, V., 2018- Vanadium Mineralization in the Kola Region,
Fennoscandian Shield, minerals,  8, 474, 1-20.DOI:10.3390/min8110474.
 
Kouhestani, H., Azimzadeh, A.M., Mokhtari, M.A.A., and Ebrahimi, M., 2017- Mineralization and fluid evolution ofepithermal base metal veins from the Aqkand deposit, NW Iran, Mineralogy and Geochemistry, 194, 139–155. DOI: 10.1127/njma/2017/0036.
Large, R.R., Gemmell, J.B., Paulick, H., and Huston, D.L., 2001- The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits, Economic Geology, 96, 957–971. DOI.org:10.2113/gsecongeo.96.5.957.
Leitch, C.H.B., and Lentz, D.R., 1994- The Gresens approach to mass balance constrains of the alteration systems: Methods, pitfalls, examples, Alteration and alteration processes associated with ore-forming Systems, Geological Association of Canada: St. John’s, NL, Canada, 11,161–192.
MacLean, W.H., 1988- Rare earth element mobility at constant inter-REE ratios in the alteration zone at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Mineralium Deposita,23, 231-238.DOI:10.1007/BF00206399.
Maclean, W.H., and Barrett, T.J., 1993- Lithogeochemical techniques using immobile elements, Geochemical Exploration, 48, 109-133. DOI: 10.1016/0375-6742(93)90002-4.
Mathieu, L., 2018- Quantifying hydrothermal alteration: a review of methods,Geoscinces, 8, 245.  DOI: 10.3390/geosciences8070245.
Mcdougall, J., and Lovering, J.F., 1963- Fractionation of chromium, nickel, cobalt and copper in a diffentiated dolrite-granophyre sequnce at red hill, Tasmania, Geological society of Australi, 10, 2, 325-338. DOI: 10.1080/00167616308728550.
Mikaeili, K.h., Hosseinzadeh, M.R., Moayyed, M., Maghfouri, S., 2018- The Shah-Ali-Beiglou Zn-Pb-Cu(-Ag) deposit, Iran: anexample of intermediate sulfidationepithermal type mineralization,Minerals, 8, 148. DOI.org:10.3390/min8040148
Nabatian, G., Ghaderi, M., Neubauer, F., Honarmand, M., Lui, X., Dong, Y.,Jiang, S.Y., von Quadt, A., and Bernroider, M., 2013- Petrogenesis of Tarom highpotassic granitoids in the Alborz-Azarbaijan belt, Iran:Geochemical, U-Pb zircon and Sr-Nd-Pb isotopic constraints,Lithos, 184, 324–345.DOI.org: 10.1016/j.lithos.2013.11.002.
Mikaeili, K.h., Hosseinzadeh, M.R., Moayyed, M., and Maghfouri, S., 2018- The Shah-Ali-Beiglou Zn-Pb-Cu(-Ag) deposit, Iran: an example of intermediate sulfidation epithermal type mineralization,Minerals, 8, 148. DOI.org:10.3390/min8040148.
Nesbitt, H.W., 1992- Diagenesis and metasomatism of weathering profiles, with emphasis on Precambrian paleosols. In: Martini, I.P., Chesworth, W. (Eds.), Weathering, Soils & Paleosols. Elsevier, Netherlands, 127–152. DOI.org:10.1016/B978-0-444-89198-3.50011-8.
Nesbitt, H.W., and Wilson, R.E., 1992- Recent chemical weathering of basalts, American journal of Science, 292, 740–777. DOI: 10.2475/ajs.292.10.740.
Nesbitt, H.W., and Young, G.M., 1982- Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature 299, 715-717. DOI:10.1038/299715a0.
Nesbitt, H.W., and Young, G.M., 1984- Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochimica et Cosmochimica Acta, 48, 1523–1534. DOI.org:10.1016/0016-7037(84)90408-3.
Nordstrom, D.K., 2000-An overview of arsenic mass-poisoning in Bangladesh and West Bengal, India, in Young, C., ed., Minor elements 2000, processing and environmental aspects of As, Sb, Se, Te, and Bi: Society for Mining, Metallurgy, and Exploration, 21-30.
Pandarinath, K., García‐Soto, A.Y., Santoyo, E., Guevara, M., and Gonzalez-Partida, E., 2020-Mineralogical and geochemical changes due to hydrothermal alteration of the volcanic rocks at Acoculco geothermal system, Mexico, Geological Jurnal, 55, 9. DOI:10.1002/gj.3817.
René, M., 2008-Anomalous rare earth element, yttrium and zirconium mobility associated with uranium mineralization, Terra Nova, 20,1, 52-58. DOI: 10.1111/j.1365-3121.2007. 00786.x.
Rubin, J.N., Henry, Ch.D., Price, J.G., 1993-The mobility of zirconium and other “immobile” elements during hydrothermal alteration, Chemical Geology, 110,1-3, 29-47.Doi:10.1016/0009-2541(93)90246-F.
Shiraki, K., 1997- Geochemical Behavior of Chromium, Resource Geology, 47, 6, 319-330. DOI:  10.11456/shigenchishitsu1992.47.319.
 
Sillitoe, R., Hedenquist, J., 2003- Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious-metal deposits, Society of Economic Geologists Special Publications, 10, 315-343.
Smith, D., and Persil, E.-A., 1997- Sb-rich rutile in the manganese concentrations at St. Marcel–Praborna, Aosta Valley, Italy; petrology and crystal-chemistry. Mineralogical Magazine, 61 (5), 655–669. DOI: 10.1180/minmag.1997.061.408.04.
Trépanier, S., Mathieu, L., Daigneault, R., Faure, S., 2016- Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks, Computers and Geosciences, 89, 32–43. DOI: 10.1016/j.cageo.2016.01.003.
Velinov, I., Gorova, M., Neykov, H., 1991- Svanbergite and  woodhouseite from the Asarel porphyry copper deposit
(Bulgaria), Comptes Rendus de l’Academie bulgare des Sciences, 44, 2, 45–48.
Voicu, G., Barodoux, M., Voicu, D., 1997- Mineralogical norm calculations applied to tropical weathering profiles. Mineralogical Magazine, 61, 185-196. DOI.org:10.1180/minmag.1997.061.405.03.
Whitney, D.L., and Evans, B.W., 2010- Abbreviations for names of rock-forming minerals, American Mineralogist, 95(1), 185-187. DOI: 10.2138/am.2010.3371.
Wood, S., 1990- The aqueous geochemistry of the rare earth elements and yttrium: 2. Theoretical prediction of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure, Chemical Geology, 88, 99–125. DOI:10.1016/0009-2541(90)90106-H.
Wood, S.A., 2003- The geochemistry of rare earth elements and yttrium in geothermal waters: Society of Economic Geologists, Special Publication 10, p.133–158.DOI: 10.5382/SP.10.08.