Document Type : Original Research Paper

Authors

1 M.Sc., Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran

2 Assistant Professor, Department of Geology, Payam Noor University of Iran, Iran

3 Professor, Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran

4 Assistant Professor, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

In the Gezeldash_daghi region, there is a significant outcrop of Miocene volcanic activity with andesitic composition associated with pyroclastic deposits including tuff, breccia and agglomerate. These rocks have porphyry to microporphyry texture with coarse crsytals of pagioclase, and matrix includes plagioclase, hornblende and minor biotite. Zoning, sieve texture in the coarse crystals of these lavas is an indicative of unstable conditions during magma solidification. These lavas have calc-alkaline nature. The geochemical characteristics of Gezeldash_daghi lavas such as LREE enrichment than HREE as well as enrichment of LILE elements with negative Nb, Ti and P anomalies indicate their affilliation to subduction setting. These rocks contain high amounts of SiO2, Sr, Sr / Y and La / Yb, and lower values of Y, MgO, and Yb than classic calc-alkaline volcanic rocks, and may indicate lava adakitic features. Based on the geochemical data, these lavas had formed partial melting of subducted oceanic crust. The depletion of rare earth elements indicates a residue containing garnet and hornblende in the source area.

Keywords

Main Subjects

Barrier, E., Vrielynck, B., Brouillet, J. and Brunet, M., 2018- Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic maps from Late Permian to Pliocene. CCGM/CGMW, Paris. CCGM/CGMW Paris: France.
Berberian, F., Muir, I. D., Pankhurst, R. J. and Berberian, M., 1982- Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran. Journal of Geological Society of London 139, 605–614. https://doi.org/10.1144/gsjgs.139.5.0605
Castillo, P. R., 2012- Adakite petrogenesis, Lithos,134-135: 304-316. https://doi.org/10.1016/j.lithos.2011.09.013.
Castro, A., Vogt, K. and Gerya, T., 2013- Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor›s andesite model. Gondwana Research, 23: 1554-1566. https://doi.org/10.1016/j.gr.2012.07.004.
Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M. and Iizuka, Y., 2013- Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162–163:70–87. https://doi.org/10.1016/j.lithos.2013.01.006.
Chung, S. L., Liu, D. Y., Ji, J. Q., Chu, M. F., Lee, H. Y., Wen, D. J., Lo, C. H., Lee, T. Y., Qian, Q. and Zhang, Q., 2003-Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31: 1021–1024. https://doi.org/10.1130/G19796.1.
Cox, K. G., Bel, G. D. and Pankhurast, R. G., 1979- The interpertationof igneous rocks, George Allen and Unwin, London.
Defant, M.J., Drummond, M.S.,1990- Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347: 662–665. https://doi.org/10.1038/347662a0.
Drummond, M. S. and Defant, M. J., 1990- A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting - Archean to modern comparisons. Journal of Geophysical Research-Solid Earth and Planets 95: 21503–21521. https://doi.org/10.1029/JB095iB13p21503.
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu,W. L., Ling,W. L., Ayers, J., Wang, X. C. and Wang, Q. H., 2004- Recycling lower continental crust in the North China craton. Nature 432: 892–897. https://doi.org/10.1038/nature03162.
Gao, Y., Hou, Z., Kamber, B. S., Wei, R., Meng, X. and Zhao, R., 2007- Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology 153: 105–120. https://doi.org/10.1007/s00410-006-0137-9.
Geng, H., Sun, M., Yuan, C., Xiao, W. J., Xian, W. S., Zhao, G. C., Zhang, L. F., Wong, K. and Wu, F. Y., 2009- Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West  Junggar, Xinjiang: implications for ridge subduction? Chemical Geology. 266: 364–389. https://doi.org/10.1016/j.chemgeo.2009.07.001.
Gill, R., 2010- Igneous rocks and processes, Wiley-Blackwell, Malaysia, 428p.
Hastie, A. R., Kerr, A. C., Pearce, J. A. and Mitchell, S. F., 2007- Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology, 48: 2341–2357. https://doi.org/10.1093/petrology/egm062.
 Helvaci, C., Ersoy, E. Y., Sözbilir, H., Erkül, F., Sümer, Ö. and Uzel, B., 2009- Geochemistry and 40Ar/39Ar geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for amphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology and Geothermal Research, 185:181–202. https://doi.org/10.1016/j.jvolgeores.2009.05.016.
Hou, Z. Q., Gao, Y. F., Qu, X. M., Rui, Z. Y. and Mo, X. X., 2004- Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth and Planetary Science Letters 220: 139–155.https://doi.org/10.1016/S0012-821X(04)00007-X.
Jahangiri, A., 2007- Post-collisional Miocene adakitic volcanism in NW Iran: Geochemical and geodynamic implications. Journal of Asian EaRth Sciences 30, 433-447. https://doi.org/10.1016/j.jseaes.2006.11.008.
Jamali, H. and Mehrabi, B., 2015- Relationships between arc maturity and Cu–Mo–Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt. Ore Geology Reviews 65, 481–501. https://doi.org/10.1016/j.oregeorev.2014.06.017.
Kepezhinskas, P. K., Defant, M. J. and Drummond, M. S., 1995- Na metasomatism in the island arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the north Kamchatka arc. Journal of Petrology 36: 1505–1527. https://doi.org/10.1093/oxfordjournals.petrology.a037263.
Lechmann, A., Burg, J.-P., Ulmer, P., Guillong, M. and Faridi, M., 2018- Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence. Lithos 304-307, 311-328. https://doi.org/10.1016/j.lithos.2018.01.030.
Macpherson, C. G., Dreher, S. T. and Thirlwall, M. F., 2006- Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243: 581–593. https://doi.org/10.1016/j.epsl.2005.12.034.
Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. and Champion, D., 2005- An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79: 1–24. https://doi.org/10.1016/j.lithos.2004.04.048.
Moayyed, M., Moazzen, M., Calagari, A., A., Jahangiri, A. and Modjarrad, M., 2008- Geochemistry and pterogenesis of lamprophyric dykes and the associated rocks from Eslamy peninsula, NW Iran: implications for deep-mantle metasomatism. Chemie der Ede 68: 141-157. https://doi.org/10.1016/j.chemer.2006.04.002.
Moradian, A., 1997- Geochemistry, Geochronology and Petrography of Feldspathoid Bearing Rocks in Urumieh-Dokhtar Volcanic Belt, Iran. Unpublished Ph.D thesis, University of Wollongong, Australia, 412pp.
Mungall, J.E., 2002- Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30: 915–918. https://doi.org/10.1016/j.lithos.2007.12.009.
Neill, I., Meliksetian, K., Allen, M. B., Navasardyan, G. and Kuiper, K., 2015- Petrogenesis of mafic collision zone magmatism: The Armenian sector of the Turkish–Iranian Plateau. Chemical Geology 403: 24–41. https://doi.org/10.1016/j.chemgeo.2015.03.013.
Nicholson, K. N., Black, P. M., Hoskin, P. W. O. and Smith, I. E. M., 2004- Silicic volcanism and back-arc extension related to migration of the Late Cainozoic Australian- Pacific plate boundary. Journal of Volcanology and Geothermal Research, 131: 295–306.https://doi.org/10.1016/S0377-0273(03)00382-2.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008- Arc magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos 106, 380-398. https://doi.org/10.1016/j.lithos.2008.09.008.
Pang, K.-N., Chung, S.-L., Zarrinkoub, M., Li, X.-H., Lee, H.-Y., Lin, T.-H. and Chiu, H.-Y., 2016- New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia-Eurasia collision zone. Lithos 264, 348-359. https://doi.org/10.1016/j.lithos.2016.08.042.
Pearce, J. A., 1983- Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Continental basalts and mantle xenoliths (Eds. Hawkesworth, C. J. and Norry, M. J.). Shiva, Nantwich: 230- 249.
Peccerillo, A. and Taylor, S. R., 1976- Geochemistry of Eocene calc- alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contribution Mineralogy and Petrology, 58: 63-81. https://doi.org/10.1007/BF00384745.
Qu, X. M., Hou, Z. Q. and Li, Y. G., 2004- Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 74: 131–148. https://doi.org/10.1016/j.lithos.2004.01.003.
Reich, M., Parada, M., Palacios, C., Dietrich, A., Schultz, F. and Lehman, B., 2003- Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: metallogenic implications. Mineral. Deposita., 38: 876-885. https://doi.org/10.1007/s00126-003-0369-9..
Schandl, E. S. and Gorton, M. P., 2002- Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology 97: 629-642. https://doi.org/10.2113/gsecongeo.97.3.629.
Sengör, A. M. C. and Kidd, W. S. F., 1979- Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics 55: 361–376. https://doi.org/10.1016/0040-1951(79)90184-7.
Sorensen, S. S. and Grossman, J. N., 1989- Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. Geochimica et Cosmochimica Acta 53: 3155–3177. https://doi.org/10.1016/0016-7037(89)90096-3.
Stern, C. R. and Kilian, R., 1996- Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contributions to Mineralogy and Petrology 123: 263–281. https://doi.org/10.1007/s004100050155.
Sun, S. S. and McDonough, W. S., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42: 313- 345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N. and Ghassemi, M. R., 2010- Lithospheric structure of NW Iran from P and S receiver functions. Journal of Seismology 14, 823-836. https://doi.org/10.1007/s10950-010-9199-2.
Torkian, A., Furman, T., Salehi, N. and Veloski, K., 2018- Petrogenesis of adakites from the Sheyda volcano, NW Iran. Journal of African Earth Sciences 150, 194-204. https://doi.org/10.1016/j.jafrearsci.2018.11.014.
Wang, Q., McDermott, F., Xu, J.F., Bellon, H. and Zhu, Y. T., 2005- Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33: 465–468. https://doi.org/10.1130/G21522.1.
Wang, Q.,Wyman, D. A., Zhao, Z. H., Xu, J. F., Bai, Z. H., Xiong, X. L., Dai, T. M., Li, C. F. and Chu, Z.Y., 2007- Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alatawarea, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology 236: 42–64. https://doi.org/10.1016/j.chemgeo.2006.08.013.
Whitney, D. L. and Evans, E. W., 2010- Abbreviations for names of rock-forming minerals, American Mineralogist, 95: 185-187. https://doi.org/10.2138/am.2010.3371.
Wilson, M., 2007- Active continental margins. In: Igneous Petrogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9388-0_7.
Winchester, J. A. and Floyd, P. A., 1977- Geochemical discrimination of immobile elements. Chemical Geology 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2.
Zhao, J. H. and Zhou, M. F., 2008- Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos 104: 231-248 .https://doi.org/10.1016/j.lithos.2007.12.009.